MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tcphip Structured version   Visualization version   GIF version

Theorem tcphip 25077
Description: The inner product of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
tcphval.n 𝐺 = (toβ„‚PreHilβ€˜π‘Š)
tcphip.s Β· = (Β·π‘–β€˜π‘Š)
Assertion
Ref Expression
tcphip Β· = (Β·π‘–β€˜πΊ)

Proof of Theorem tcphip
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 eqid 2724 . . 3 (Baseβ€˜π‘Š) = (Baseβ€˜π‘Š)
21tcphex 25069 . 2 (π‘₯ ∈ (Baseβ€˜π‘Š) ↦ (βˆšβ€˜(π‘₯ Β· π‘₯))) ∈ V
3 tcphval.n . . . 4 𝐺 = (toβ„‚PreHilβ€˜π‘Š)
4 tcphip.s . . . 4 Β· = (Β·π‘–β€˜π‘Š)
53, 1, 4tcphval 25070 . . 3 𝐺 = (π‘Š toNrmGrp (π‘₯ ∈ (Baseβ€˜π‘Š) ↦ (βˆšβ€˜(π‘₯ Β· π‘₯))))
65, 4tngip 24486 . 2 ((π‘₯ ∈ (Baseβ€˜π‘Š) ↦ (βˆšβ€˜(π‘₯ Β· π‘₯))) ∈ V β†’ Β· = (Β·π‘–β€˜πΊ))
72, 6ax-mp 5 1 Β· = (Β·π‘–β€˜πΊ)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533   ∈ wcel 2098  Vcvv 3466   ↦ cmpt 5222  β€˜cfv 6534  (class class class)co 7402  βˆšcsqrt 15178  Basecbs 17145  Β·π‘–cip 17203  toβ„‚PreHilctcph 25019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-sup 9434  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-div 11870  df-nn 12211  df-2 12273  df-3 12274  df-4 12275  df-5 12276  df-6 12277  df-7 12278  df-8 12279  df-9 12280  df-n0 12471  df-z 12557  df-dec 12676  df-uz 12821  df-rp 12973  df-seq 13965  df-exp 14026  df-cj 15044  df-re 15045  df-im 15046  df-sqrt 15180  df-abs 15181  df-sets 17098  df-slot 17116  df-ndx 17128  df-sca 17214  df-vsca 17215  df-ip 17216  df-tset 17217  df-ds 17220  df-tng 24417  df-tcph 25021
This theorem is referenced by:  tcphphl  25079  tcphcph  25089  rrxip  25242  rrxnm  25243
  Copyright terms: Public domain W3C validator