| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tchnmfval | Structured version Visualization version GIF version | ||
| Description: The norm of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015.) |
| Ref | Expression |
|---|---|
| tcphval.n | ⊢ 𝐺 = (toℂPreHil‘𝑊) |
| tcphnmval.n | ⊢ 𝑁 = (norm‘𝐺) |
| tcphnmval.v | ⊢ 𝑉 = (Base‘𝑊) |
| tcphnmval.h | ⊢ , = (·𝑖‘𝑊) |
| Ref | Expression |
|---|---|
| tchnmfval | ⊢ (𝑊 ∈ Grp → 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphnmval.n | . 2 ⊢ 𝑁 = (norm‘𝐺) | |
| 2 | eqid 2737 | . . . 4 ⊢ (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))) = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))) | |
| 3 | fvrn0 6936 | . . . . 5 ⊢ (√‘(𝑥 , 𝑥)) ∈ (ran √ ∪ {∅}) | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ 𝑉 → (√‘(𝑥 , 𝑥)) ∈ (ran √ ∪ {∅})) |
| 5 | 2, 4 | fmpti 7132 | . . 3 ⊢ (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))):𝑉⟶(ran √ ∪ {∅}) |
| 6 | tcphval.n | . . . . 5 ⊢ 𝐺 = (toℂPreHil‘𝑊) | |
| 7 | tcphnmval.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 8 | tcphnmval.h | . . . . 5 ⊢ , = (·𝑖‘𝑊) | |
| 9 | 6, 7, 8 | tcphval 25252 | . . . 4 ⊢ 𝐺 = (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
| 10 | cnex 11236 | . . . . . 6 ⊢ ℂ ∈ V | |
| 11 | sqrtf 15402 | . . . . . . 7 ⊢ √:ℂ⟶ℂ | |
| 12 | frn 6743 | . . . . . . 7 ⊢ (√:ℂ⟶ℂ → ran √ ⊆ ℂ) | |
| 13 | 11, 12 | ax-mp 5 | . . . . . 6 ⊢ ran √ ⊆ ℂ |
| 14 | 10, 13 | ssexi 5322 | . . . . 5 ⊢ ran √ ∈ V |
| 15 | p0ex 5384 | . . . . 5 ⊢ {∅} ∈ V | |
| 16 | 14, 15 | unex 7764 | . . . 4 ⊢ (ran √ ∪ {∅}) ∈ V |
| 17 | 9, 7, 16 | tngnm 24672 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))):𝑉⟶(ran √ ∪ {∅})) → (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))) = (norm‘𝐺)) |
| 18 | 5, 17 | mpan2 691 | . 2 ⊢ (𝑊 ∈ Grp → (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))) = (norm‘𝐺)) |
| 19 | 1, 18 | eqtr4id 2796 | 1 ⊢ (𝑊 ∈ Grp → 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∪ cun 3949 ⊆ wss 3951 ∅c0 4333 {csn 4626 ↦ cmpt 5225 ran crn 5686 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 √csqrt 15272 Basecbs 17247 ·𝑖cip 17302 Grpcgrp 18951 normcnm 24589 toℂPreHilctcph 25201 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-rp 13035 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-tset 17316 df-ds 17319 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-minusg 18955 df-sbg 18956 df-nm 24595 df-tng 24597 df-tcph 25203 |
| This theorem is referenced by: tcphnmval 25263 cphtcphnm 25264 tcphds 25265 rrxnm 25425 |
| Copyright terms: Public domain | W3C validator |