Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tchnmfval | Structured version Visualization version GIF version |
Description: The norm of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015.) |
Ref | Expression |
---|---|
tcphval.n | ⊢ 𝐺 = (toℂPreHil‘𝑊) |
tcphnmval.n | ⊢ 𝑁 = (norm‘𝐺) |
tcphnmval.v | ⊢ 𝑉 = (Base‘𝑊) |
tcphnmval.h | ⊢ , = (·𝑖‘𝑊) |
Ref | Expression |
---|---|
tchnmfval | ⊢ (𝑊 ∈ Grp → 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tcphnmval.n | . 2 ⊢ 𝑁 = (norm‘𝐺) | |
2 | eqid 2738 | . . . 4 ⊢ (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))) = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))) | |
3 | fvrn0 6802 | . . . . 5 ⊢ (√‘(𝑥 , 𝑥)) ∈ (ran √ ∪ {∅}) | |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ 𝑉 → (√‘(𝑥 , 𝑥)) ∈ (ran √ ∪ {∅})) |
5 | 2, 4 | fmpti 6986 | . . 3 ⊢ (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))):𝑉⟶(ran √ ∪ {∅}) |
6 | tcphval.n | . . . . 5 ⊢ 𝐺 = (toℂPreHil‘𝑊) | |
7 | tcphnmval.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
8 | tcphnmval.h | . . . . 5 ⊢ , = (·𝑖‘𝑊) | |
9 | 6, 7, 8 | tcphval 24382 | . . . 4 ⊢ 𝐺 = (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
10 | cnex 10952 | . . . . . 6 ⊢ ℂ ∈ V | |
11 | sqrtf 15075 | . . . . . . 7 ⊢ √:ℂ⟶ℂ | |
12 | frn 6607 | . . . . . . 7 ⊢ (√:ℂ⟶ℂ → ran √ ⊆ ℂ) | |
13 | 11, 12 | ax-mp 5 | . . . . . 6 ⊢ ran √ ⊆ ℂ |
14 | 10, 13 | ssexi 5246 | . . . . 5 ⊢ ran √ ∈ V |
15 | p0ex 5307 | . . . . 5 ⊢ {∅} ∈ V | |
16 | 14, 15 | unex 7596 | . . . 4 ⊢ (ran √ ∪ {∅}) ∈ V |
17 | 9, 7, 16 | tngnm 23815 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))):𝑉⟶(ran √ ∪ {∅})) → (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))) = (norm‘𝐺)) |
18 | 5, 17 | mpan2 688 | . 2 ⊢ (𝑊 ∈ Grp → (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))) = (norm‘𝐺)) |
19 | 1, 18 | eqtr4id 2797 | 1 ⊢ (𝑊 ∈ Grp → 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∪ cun 3885 ⊆ wss 3887 ∅c0 4256 {csn 4561 ↦ cmpt 5157 ran crn 5590 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 √csqrt 14944 Basecbs 16912 ·𝑖cip 16967 Grpcgrp 18577 normcnm 23732 toℂPreHilctcph 24331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-rp 12731 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-tset 16981 df-ds 16984 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-sbg 18582 df-nm 23738 df-tng 23740 df-tcph 24333 |
This theorem is referenced by: tcphnmval 24393 cphtcphnm 24394 tcphds 24395 rrxnm 24555 |
Copyright terms: Public domain | W3C validator |