| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tchnmfval | Structured version Visualization version GIF version | ||
| Description: The norm of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015.) |
| Ref | Expression |
|---|---|
| tcphval.n | ⊢ 𝐺 = (toℂPreHil‘𝑊) |
| tcphnmval.n | ⊢ 𝑁 = (norm‘𝐺) |
| tcphnmval.v | ⊢ 𝑉 = (Base‘𝑊) |
| tcphnmval.h | ⊢ , = (·𝑖‘𝑊) |
| Ref | Expression |
|---|---|
| tchnmfval | ⊢ (𝑊 ∈ Grp → 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphnmval.n | . 2 ⊢ 𝑁 = (norm‘𝐺) | |
| 2 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))) = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))) | |
| 3 | fvrn0 6870 | . . . . 5 ⊢ (√‘(𝑥 , 𝑥)) ∈ (ran √ ∪ {∅}) | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ 𝑉 → (√‘(𝑥 , 𝑥)) ∈ (ran √ ∪ {∅})) |
| 5 | 2, 4 | fmpti 7066 | . . 3 ⊢ (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))):𝑉⟶(ran √ ∪ {∅}) |
| 6 | tcphval.n | . . . . 5 ⊢ 𝐺 = (toℂPreHil‘𝑊) | |
| 7 | tcphnmval.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 8 | tcphnmval.h | . . . . 5 ⊢ , = (·𝑖‘𝑊) | |
| 9 | 6, 7, 8 | tcphval 25151 | . . . 4 ⊢ 𝐺 = (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
| 10 | cnex 11125 | . . . . . 6 ⊢ ℂ ∈ V | |
| 11 | sqrtf 15306 | . . . . . . 7 ⊢ √:ℂ⟶ℂ | |
| 12 | frn 6677 | . . . . . . 7 ⊢ (√:ℂ⟶ℂ → ran √ ⊆ ℂ) | |
| 13 | 11, 12 | ax-mp 5 | . . . . . 6 ⊢ ran √ ⊆ ℂ |
| 14 | 10, 13 | ssexi 5272 | . . . . 5 ⊢ ran √ ∈ V |
| 15 | p0ex 5334 | . . . . 5 ⊢ {∅} ∈ V | |
| 16 | 14, 15 | unex 7700 | . . . 4 ⊢ (ran √ ∪ {∅}) ∈ V |
| 17 | 9, 7, 16 | tngnm 24572 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))):𝑉⟶(ran √ ∪ {∅})) → (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))) = (norm‘𝐺)) |
| 18 | 5, 17 | mpan2 691 | . 2 ⊢ (𝑊 ∈ Grp → (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))) = (norm‘𝐺)) |
| 19 | 1, 18 | eqtr4id 2783 | 1 ⊢ (𝑊 ∈ Grp → 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cun 3909 ⊆ wss 3911 ∅c0 4292 {csn 4585 ↦ cmpt 5183 ran crn 5632 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 √csqrt 15175 Basecbs 17155 ·𝑖cip 17201 Grpcgrp 18847 normcnm 24497 toℂPreHilctcph 25100 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-rp 12928 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-tset 17215 df-ds 17218 df-0g 17380 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-grp 18850 df-minusg 18851 df-sbg 18852 df-nm 24503 df-tng 24505 df-tcph 25102 |
| This theorem is referenced by: tcphnmval 25162 cphtcphnm 25163 tcphds 25164 rrxnm 25324 |
| Copyright terms: Public domain | W3C validator |