![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tchnmfval | Structured version Visualization version GIF version |
Description: The norm of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015.) |
Ref | Expression |
---|---|
tcphval.n | ⊢ 𝐺 = (toℂPreHil‘𝑊) |
tcphnmval.n | ⊢ 𝑁 = (norm‘𝐺) |
tcphnmval.v | ⊢ 𝑉 = (Base‘𝑊) |
tcphnmval.h | ⊢ , = (·𝑖‘𝑊) |
Ref | Expression |
---|---|
tchnmfval | ⊢ (𝑊 ∈ Grp → 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tcphnmval.n | . 2 ⊢ 𝑁 = (norm‘𝐺) | |
2 | eqid 2740 | . . . 4 ⊢ (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))) = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))) | |
3 | fvrn0 6950 | . . . . 5 ⊢ (√‘(𝑥 , 𝑥)) ∈ (ran √ ∪ {∅}) | |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ 𝑉 → (√‘(𝑥 , 𝑥)) ∈ (ran √ ∪ {∅})) |
5 | 2, 4 | fmpti 7146 | . . 3 ⊢ (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))):𝑉⟶(ran √ ∪ {∅}) |
6 | tcphval.n | . . . . 5 ⊢ 𝐺 = (toℂPreHil‘𝑊) | |
7 | tcphnmval.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
8 | tcphnmval.h | . . . . 5 ⊢ , = (·𝑖‘𝑊) | |
9 | 6, 7, 8 | tcphval 25271 | . . . 4 ⊢ 𝐺 = (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
10 | cnex 11265 | . . . . . 6 ⊢ ℂ ∈ V | |
11 | sqrtf 15412 | . . . . . . 7 ⊢ √:ℂ⟶ℂ | |
12 | frn 6754 | . . . . . . 7 ⊢ (√:ℂ⟶ℂ → ran √ ⊆ ℂ) | |
13 | 11, 12 | ax-mp 5 | . . . . . 6 ⊢ ran √ ⊆ ℂ |
14 | 10, 13 | ssexi 5340 | . . . . 5 ⊢ ran √ ∈ V |
15 | p0ex 5402 | . . . . 5 ⊢ {∅} ∈ V | |
16 | 14, 15 | unex 7779 | . . . 4 ⊢ (ran √ ∪ {∅}) ∈ V |
17 | 9, 7, 16 | tngnm 24693 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))):𝑉⟶(ran √ ∪ {∅})) → (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))) = (norm‘𝐺)) |
18 | 5, 17 | mpan2 690 | . 2 ⊢ (𝑊 ∈ Grp → (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))) = (norm‘𝐺)) |
19 | 1, 18 | eqtr4id 2799 | 1 ⊢ (𝑊 ∈ Grp → 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∪ cun 3974 ⊆ wss 3976 ∅c0 4352 {csn 4648 ↦ cmpt 5249 ran crn 5701 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 √csqrt 15282 Basecbs 17258 ·𝑖cip 17316 Grpcgrp 18973 normcnm 24610 toℂPreHilctcph 25220 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-rp 13058 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-tset 17330 df-ds 17333 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-sbg 18978 df-nm 24616 df-tng 24618 df-tcph 25222 |
This theorem is referenced by: tcphnmval 25282 cphtcphnm 25283 tcphds 25284 rrxnm 25444 |
Copyright terms: Public domain | W3C validator |