MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxsca Structured version   Visualization version   GIF version

Theorem rrxsca 25330
Description: The field of real numbers is the scalar field of the generalized real Euclidean space. (Contributed by AV, 15-Jan-2023.)
Hypothesis
Ref Expression
rrxsca.r 𝐻 = (ℝ^‘𝐼)
Assertion
Ref Expression
rrxsca (𝐼𝑉 → (Scalar‘𝐻) = ℝfld)

Proof of Theorem rrxsca
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rrxsca.r . . . 4 𝐻 = (ℝ^‘𝐼)
2 eqid 2729 . . . 4 (Base‘𝐻) = (Base‘𝐻)
31, 2rrxprds 25323 . . 3 (𝐼𝑉𝐻 = (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))))
43fveq2d 6844 . 2 (𝐼𝑉 → (Scalar‘𝐻) = (Scalar‘(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))))
5 fvex 6853 . . . . 5 (Base‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) ∈ V
65mptex 7179 . . . 4 (𝑥 ∈ (Base‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) ↦ (√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))𝑥))) ∈ V
7 eqid 2729 . . . . . 6 (((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)) toNrmGrp (𝑥 ∈ (Base‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) ↦ (√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))𝑥)))) = (((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)) toNrmGrp (𝑥 ∈ (Base‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) ↦ (√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))𝑥))))
8 eqid 2729 . . . . . 6 (Scalar‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) = (Scalar‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))
97, 8tngsca 24567 . . . . 5 ((𝑥 ∈ (Base‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) ↦ (√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))𝑥))) ∈ V → (Scalar‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) = (Scalar‘(((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)) toNrmGrp (𝑥 ∈ (Base‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) ↦ (√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))𝑥))))))
109eqcomd 2735 . . . 4 ((𝑥 ∈ (Base‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) ↦ (√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))𝑥))) ∈ V → (Scalar‘(((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)) toNrmGrp (𝑥 ∈ (Base‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) ↦ (√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))𝑥))))) = (Scalar‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))))
116, 10mp1i 13 . . 3 (𝐼𝑉 → (Scalar‘(((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)) toNrmGrp (𝑥 ∈ (Base‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) ↦ (√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))𝑥))))) = (Scalar‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))))
12 eqid 2729 . . . . . 6 (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) = (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))
13 eqid 2729 . . . . . 6 (Base‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) = (Base‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))
14 eqid 2729 . . . . . 6 (·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) = (·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))
1512, 13, 14tcphval 25152 . . . . 5 (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) = (((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)) toNrmGrp (𝑥 ∈ (Base‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) ↦ (√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))𝑥))))
1615fveq2i 6843 . . . 4 (Scalar‘(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))) = (Scalar‘(((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)) toNrmGrp (𝑥 ∈ (Base‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) ↦ (√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))𝑥)))))
1716a1i 11 . . 3 (𝐼𝑉 → (Scalar‘(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))) = (Scalar‘(((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)) toNrmGrp (𝑥 ∈ (Base‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) ↦ (√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))𝑥))))))
18 eqid 2729 . . . . 5 (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) = (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))
19 refld 21562 . . . . . 6 fld ∈ Field
2019a1i 11 . . . . 5 (𝐼𝑉 → ℝfld ∈ Field)
21 id 22 . . . . . 6 (𝐼𝑉𝐼𝑉)
22 snex 5386 . . . . . . 7 {((subringAlg ‘ℝfld)‘ℝ)} ∈ V
2322a1i 11 . . . . . 6 (𝐼𝑉 → {((subringAlg ‘ℝfld)‘ℝ)} ∈ V)
2421, 23xpexd 7707 . . . . 5 (𝐼𝑉 → (𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}) ∈ V)
2518, 20, 24prdssca 17396 . . . 4 (𝐼𝑉 → ℝfld = (Scalar‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))))
26 fvex 6853 . . . . 5 (Base‘𝐻) ∈ V
27 eqid 2729 . . . . . 6 ((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)) = ((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))
28 eqid 2729 . . . . . 6 (Scalar‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (Scalar‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})))
2927, 28resssca 17283 . . . . 5 ((Base‘𝐻) ∈ V → (Scalar‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (Scalar‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))))
3026, 29mp1i 13 . . . 4 (𝐼𝑉 → (Scalar‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (Scalar‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))))
3125, 30eqtrd 2764 . . 3 (𝐼𝑉 → ℝfld = (Scalar‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))))
3211, 17, 313eqtr4d 2774 . 2 (𝐼𝑉 → (Scalar‘(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))) = ℝfld)
334, 32eqtrd 2764 1 (𝐼𝑉 → (Scalar‘𝐻) = ℝfld)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3444  {csn 4585  cmpt 5183   × cxp 5629  cfv 6499  (class class class)co 7369  cr 11045  csqrt 15176  Basecbs 17156  s cress 17177  Scalarcsca 17200  ·𝑖cip 17202  Xscprds 17385  Fieldcfield 20651  subringAlg csra 21111  fldcrefld 21547   toNrmGrp ctng 24500  toℂPreHilctcph 25101  ℝ^crrx 25317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123  ax-pre-sup 11124  ax-addf 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-div 11814  df-nn 12165  df-2 12227  df-3 12228  df-4 12229  df-5 12230  df-6 12231  df-7 12232  df-8 12233  df-9 12234  df-n0 12421  df-z 12508  df-dec 12628  df-uz 12772  df-rp 12930  df-fz 13447  df-seq 13945  df-exp 14005  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-struct 17094  df-sets 17111  df-slot 17129  df-ndx 17141  df-base 17157  df-ress 17178  df-plusg 17210  df-mulr 17211  df-starv 17212  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-hom 17221  df-cco 17222  df-0g 17381  df-prds 17387  df-pws 17389  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-subg 19038  df-cmn 19697  df-abl 19698  df-mgp 20062  df-rng 20074  df-ur 20103  df-ring 20156  df-cring 20157  df-oppr 20258  df-dvdsr 20278  df-unit 20279  df-invr 20309  df-dvr 20322  df-subrng 20467  df-subrg 20491  df-drng 20652  df-field 20653  df-sra 21113  df-rgmod 21114  df-cnfld 21298  df-refld 21548  df-dsmm 21675  df-frlm 21690  df-tng 24506  df-tcph 25103  df-rrx 25319
This theorem is referenced by:  rrxlines  48716
  Copyright terms: Public domain W3C validator