MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxsca Structured version   Visualization version   GIF version

Theorem rrxsca 24712
Description: The field of real numbers is the scalar field of the generalized real Euclidean space. (Contributed by AV, 15-Jan-2023.)
Hypothesis
Ref Expression
rrxsca.r 𝐻 = (ℝ^‘𝐼)
Assertion
Ref Expression
rrxsca (𝐼𝑉 → (Scalar‘𝐻) = ℝfld)

Proof of Theorem rrxsca
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rrxsca.r . . . 4 𝐻 = (ℝ^‘𝐼)
2 eqid 2738 . . . 4 (Base‘𝐻) = (Base‘𝐻)
31, 2rrxprds 24705 . . 3 (𝐼𝑉𝐻 = (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))))
43fveq2d 6844 . 2 (𝐼𝑉 → (Scalar‘𝐻) = (Scalar‘(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))))
5 fvex 6853 . . . . 5 (Base‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) ∈ V
65mptex 7170 . . . 4 (𝑥 ∈ (Base‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) ↦ (√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))𝑥))) ∈ V
7 eqid 2738 . . . . . 6 (((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)) toNrmGrp (𝑥 ∈ (Base‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) ↦ (√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))𝑥)))) = (((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)) toNrmGrp (𝑥 ∈ (Base‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) ↦ (√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))𝑥))))
8 eqid 2738 . . . . . 6 (Scalar‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) = (Scalar‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))
97, 8tngsca 23957 . . . . 5 ((𝑥 ∈ (Base‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) ↦ (√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))𝑥))) ∈ V → (Scalar‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) = (Scalar‘(((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)) toNrmGrp (𝑥 ∈ (Base‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) ↦ (√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))𝑥))))))
109eqcomd 2744 . . . 4 ((𝑥 ∈ (Base‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) ↦ (√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))𝑥))) ∈ V → (Scalar‘(((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)) toNrmGrp (𝑥 ∈ (Base‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) ↦ (√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))𝑥))))) = (Scalar‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))))
116, 10mp1i 13 . . 3 (𝐼𝑉 → (Scalar‘(((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)) toNrmGrp (𝑥 ∈ (Base‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) ↦ (√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))𝑥))))) = (Scalar‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))))
12 eqid 2738 . . . . . 6 (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) = (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))
13 eqid 2738 . . . . . 6 (Base‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) = (Base‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))
14 eqid 2738 . . . . . 6 (·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) = (·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))
1512, 13, 14tcphval 24534 . . . . 5 (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) = (((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)) toNrmGrp (𝑥 ∈ (Base‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) ↦ (√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))𝑥))))
1615fveq2i 6843 . . . 4 (Scalar‘(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))) = (Scalar‘(((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)) toNrmGrp (𝑥 ∈ (Base‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) ↦ (√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))𝑥)))))
1716a1i 11 . . 3 (𝐼𝑉 → (Scalar‘(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))) = (Scalar‘(((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)) toNrmGrp (𝑥 ∈ (Base‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) ↦ (√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))𝑥))))))
18 eqid 2738 . . . . 5 (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) = (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))
19 refld 20976 . . . . . 6 fld ∈ Field
2019a1i 11 . . . . 5 (𝐼𝑉 → ℝfld ∈ Field)
21 id 22 . . . . . 6 (𝐼𝑉𝐼𝑉)
22 snex 5387 . . . . . . 7 {((subringAlg ‘ℝfld)‘ℝ)} ∈ V
2322a1i 11 . . . . . 6 (𝐼𝑉 → {((subringAlg ‘ℝfld)‘ℝ)} ∈ V)
2421, 23xpexd 7678 . . . . 5 (𝐼𝑉 → (𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}) ∈ V)
2518, 20, 24prdssca 17298 . . . 4 (𝐼𝑉 → ℝfld = (Scalar‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))))
26 fvex 6853 . . . . 5 (Base‘𝐻) ∈ V
27 eqid 2738 . . . . . 6 ((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)) = ((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))
28 eqid 2738 . . . . . 6 (Scalar‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (Scalar‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})))
2927, 28resssca 17184 . . . . 5 ((Base‘𝐻) ∈ V → (Scalar‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (Scalar‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))))
3026, 29mp1i 13 . . . 4 (𝐼𝑉 → (Scalar‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (Scalar‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))))
3125, 30eqtrd 2778 . . 3 (𝐼𝑉 → ℝfld = (Scalar‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))))
3211, 17, 313eqtr4d 2788 . 2 (𝐼𝑉 → (Scalar‘(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)))) = ℝfld)
334, 32eqtrd 2778 1 (𝐼𝑉 → (Scalar‘𝐻) = ℝfld)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  Vcvv 3444  {csn 4585  cmpt 5187   × cxp 5630  cfv 6494  (class class class)co 7352  cr 11009  csqrt 15078  Basecbs 17043  s cress 17072  Scalarcsca 17096  ·𝑖cip 17098  Xscprds 17287  Fieldcfield 20139  subringAlg csra 20582  fldcrefld 20961   toNrmGrp ctng 23886  toℂPreHilctcph 24483  ℝ^crrx 24699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7665  ax-cnex 11066  ax-resscn 11067  ax-1cn 11068  ax-icn 11069  ax-addcl 11070  ax-addrcl 11071  ax-mulcl 11072  ax-mulrcl 11073  ax-mulcom 11074  ax-addass 11075  ax-mulass 11076  ax-distr 11077  ax-i2m1 11078  ax-1ne0 11079  ax-1rid 11080  ax-rnegex 11081  ax-rrecex 11082  ax-cnre 11083  ax-pre-lttri 11084  ax-pre-lttrn 11085  ax-pre-ltadd 11086  ax-pre-mulgt0 11087  ax-pre-sup 11088  ax-addf 11089  ax-mulf 11090
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4865  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5530  df-eprel 5536  df-po 5544  df-so 5545  df-fr 5587  df-we 5589  df-xp 5638  df-rel 5639  df-cnv 5640  df-co 5641  df-dm 5642  df-rn 5643  df-res 5644  df-ima 5645  df-pred 6252  df-ord 6319  df-on 6320  df-lim 6321  df-suc 6322  df-iota 6446  df-fun 6496  df-fn 6497  df-f 6498  df-f1 6499  df-fo 6500  df-f1o 6501  df-fv 6502  df-riota 7308  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7796  df-1st 7914  df-2nd 7915  df-tpos 8150  df-frecs 8205  df-wrecs 8236  df-recs 8310  df-rdg 8349  df-1o 8405  df-er 8607  df-map 8726  df-ixp 8795  df-en 8843  df-dom 8844  df-sdom 8845  df-fin 8846  df-sup 9337  df-pnf 11150  df-mnf 11151  df-xr 11152  df-ltxr 11153  df-le 11154  df-sub 11346  df-neg 11347  df-div 11772  df-nn 12113  df-2 12175  df-3 12176  df-4 12177  df-5 12178  df-6 12179  df-7 12180  df-8 12181  df-9 12182  df-n0 12373  df-z 12459  df-dec 12578  df-uz 12723  df-rp 12871  df-fz 13380  df-seq 13862  df-exp 13923  df-cj 14944  df-re 14945  df-im 14946  df-sqrt 15080  df-abs 15081  df-struct 16979  df-sets 16996  df-slot 17014  df-ndx 17026  df-base 17044  df-ress 17073  df-plusg 17106  df-mulr 17107  df-starv 17108  df-sca 17109  df-vsca 17110  df-ip 17111  df-tset 17112  df-ple 17113  df-ds 17115  df-unif 17116  df-hom 17117  df-cco 17118  df-0g 17283  df-prds 17289  df-pws 17291  df-mgm 18457  df-sgrp 18506  df-mnd 18517  df-grp 18711  df-minusg 18712  df-subg 18884  df-cmn 19523  df-mgp 19856  df-ur 19873  df-ring 19920  df-cring 19921  df-oppr 20002  df-dvdsr 20023  df-unit 20024  df-invr 20054  df-dvr 20065  df-drng 20140  df-field 20141  df-subrg 20173  df-sra 20586  df-rgmod 20587  df-cnfld 20750  df-refld 20962  df-dsmm 21091  df-frlm 21106  df-tng 23892  df-tcph 24485  df-rrx 24701
This theorem is referenced by:  rrxlines  46714
  Copyright terms: Public domain W3C validator