| Step | Hyp | Ref
| Expression |
| 1 | | rrxsca.r |
. . . 4
⊢ 𝐻 = (ℝ^‘𝐼) |
| 2 | | eqid 2730 |
. . . 4
⊢
(Base‘𝐻) =
(Base‘𝐻) |
| 3 | 1, 2 | rrxprds 25296 |
. . 3
⊢ (𝐼 ∈ 𝑉 → 𝐻 =
(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻)))) |
| 4 | 3 | fveq2d 6865 |
. 2
⊢ (𝐼 ∈ 𝑉 → (Scalar‘𝐻) =
(Scalar‘(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))))) |
| 5 | | fvex 6874 |
. . . . 5
⊢
(Base‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))) ∈
V |
| 6 | 5 | mptex 7200 |
. . . 4
⊢ (𝑥 ∈
(Base‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))) ↦
(√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))
↾s (Base‘𝐻)))𝑥))) ∈ V |
| 7 | | eqid 2730 |
. . . . . 6
⊢
(((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻)) toNrmGrp
(𝑥 ∈
(Base‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))) ↦
(√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))
↾s (Base‘𝐻)))𝑥)))) = (((ℝfldXs(𝐼 ×
{((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)) toNrmGrp (𝑥 ∈ (Base‘((ℝfldXs(𝐼 ×
{((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) ↦ (√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))
↾s (Base‘𝐻)))𝑥)))) |
| 8 | | eqid 2730 |
. . . . . 6
⊢
(Scalar‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))) =
(Scalar‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))) |
| 9 | 7, 8 | tngsca 24540 |
. . . . 5
⊢ ((𝑥 ∈
(Base‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))) ↦
(√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))
↾s (Base‘𝐻)))𝑥))) ∈ V →
(Scalar‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) = (Scalar‘(((ℝfldXs(𝐼 ×
{((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)) toNrmGrp (𝑥 ∈ (Base‘((ℝfldXs(𝐼 ×
{((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) ↦ (√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))
↾s (Base‘𝐻)))𝑥)))))) |
| 10 | 9 | eqcomd 2736 |
. . . 4
⊢ ((𝑥 ∈
(Base‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))) ↦
(√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))
↾s (Base‘𝐻)))𝑥))) ∈ V →
(Scalar‘(((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)) toNrmGrp (𝑥
∈ (Base‘((ℝfldXs(𝐼 ×
{((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) ↦ (√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))
↾s (Base‘𝐻)))𝑥))))) = (Scalar‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))
↾s (Base‘𝐻)))) |
| 11 | 6, 10 | mp1i 13 |
. . 3
⊢ (𝐼 ∈ 𝑉 →
(Scalar‘(((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻)) toNrmGrp
(𝑥 ∈
(Base‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))) ↦
(√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))
↾s (Base‘𝐻)))𝑥))))) = (Scalar‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))
↾s (Base‘𝐻)))) |
| 12 | | eqid 2730 |
. . . . . 6
⊢
(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))) =
(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))) |
| 13 | | eqid 2730 |
. . . . . 6
⊢
(Base‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))) =
(Base‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))) |
| 14 | | eqid 2730 |
. . . . . 6
⊢
(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))) =
(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))) |
| 15 | 12, 13, 14 | tcphval 25125 |
. . . . 5
⊢
(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))) =
(((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻)) toNrmGrp
(𝑥 ∈
(Base‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))) ↦
(√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))
↾s (Base‘𝐻)))𝑥)))) |
| 16 | 15 | fveq2i 6864 |
. . . 4
⊢
(Scalar‘(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻)))) =
(Scalar‘(((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻)) toNrmGrp
(𝑥 ∈
(Base‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))) ↦
(√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))
↾s (Base‘𝐻)))𝑥))))) |
| 17 | 16 | a1i 11 |
. . 3
⊢ (𝐼 ∈ 𝑉 →
(Scalar‘(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻)))) =
(Scalar‘(((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻)) toNrmGrp
(𝑥 ∈
(Base‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))) ↦
(√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))
↾s (Base‘𝐻)))𝑥)))))) |
| 18 | | eqid 2730 |
. . . . 5
⊢
(ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) = (ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) |
| 19 | | refld 21535 |
. . . . . 6
⊢
ℝfld ∈ Field |
| 20 | 19 | a1i 11 |
. . . . 5
⊢ (𝐼 ∈ 𝑉 → ℝfld ∈
Field) |
| 21 | | id 22 |
. . . . . 6
⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ 𝑉) |
| 22 | | snex 5394 |
. . . . . . 7
⊢
{((subringAlg ‘ℝfld)‘ℝ)} ∈
V |
| 23 | 22 | a1i 11 |
. . . . . 6
⊢ (𝐼 ∈ 𝑉 → {((subringAlg
‘ℝfld)‘ℝ)} ∈ V) |
| 24 | 21, 23 | xpexd 7730 |
. . . . 5
⊢ (𝐼 ∈ 𝑉 → (𝐼 × {((subringAlg
‘ℝfld)‘ℝ)}) ∈ V) |
| 25 | 18, 20, 24 | prdssca 17426 |
. . . 4
⊢ (𝐼 ∈ 𝑉 → ℝfld =
(Scalar‘(ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})))) |
| 26 | | fvex 6874 |
. . . . 5
⊢
(Base‘𝐻)
∈ V |
| 27 | | eqid 2730 |
. . . . . 6
⊢
((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻)) =
((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻)) |
| 28 | | eqid 2730 |
. . . . . 6
⊢
(Scalar‘(ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)}))) =
(Scalar‘(ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)}))) |
| 29 | 27, 28 | resssca 17313 |
. . . . 5
⊢
((Base‘𝐻)
∈ V → (Scalar‘(ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)}))) =
(Scalar‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻)))) |
| 30 | 26, 29 | mp1i 13 |
. . . 4
⊢ (𝐼 ∈ 𝑉 →
(Scalar‘(ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)}))) =
(Scalar‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻)))) |
| 31 | 25, 30 | eqtrd 2765 |
. . 3
⊢ (𝐼 ∈ 𝑉 → ℝfld =
(Scalar‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻)))) |
| 32 | 11, 17, 31 | 3eqtr4d 2775 |
. 2
⊢ (𝐼 ∈ 𝑉 →
(Scalar‘(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻)))) =
ℝfld) |
| 33 | 4, 32 | eqtrd 2765 |
1
⊢ (𝐼 ∈ 𝑉 → (Scalar‘𝐻) = ℝfld) |