Step | Hyp | Ref
| Expression |
1 | | rrxsca.r |
. . . 4
⊢ 𝐻 = (ℝ^‘𝐼) |
2 | | eqid 2738 |
. . . 4
⊢
(Base‘𝐻) =
(Base‘𝐻) |
3 | 1, 2 | rrxprds 24458 |
. . 3
⊢ (𝐼 ∈ 𝑉 → 𝐻 =
(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻)))) |
4 | 3 | fveq2d 6760 |
. 2
⊢ (𝐼 ∈ 𝑉 → (Scalar‘𝐻) =
(Scalar‘(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))))) |
5 | | fvex 6769 |
. . . . 5
⊢
(Base‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))) ∈
V |
6 | 5 | mptex 7081 |
. . . 4
⊢ (𝑥 ∈
(Base‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))) ↦
(√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))
↾s (Base‘𝐻)))𝑥))) ∈ V |
7 | | eqid 2738 |
. . . . . 6
⊢
(((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻)) toNrmGrp
(𝑥 ∈
(Base‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))) ↦
(√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))
↾s (Base‘𝐻)))𝑥)))) = (((ℝfldXs(𝐼 ×
{((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)) toNrmGrp (𝑥 ∈ (Base‘((ℝfldXs(𝐼 ×
{((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) ↦ (√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))
↾s (Base‘𝐻)))𝑥)))) |
8 | | eqid 2738 |
. . . . . 6
⊢
(Scalar‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))) =
(Scalar‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))) |
9 | 7, 8 | tngsca 23711 |
. . . . 5
⊢ ((𝑥 ∈
(Base‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))) ↦
(√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))
↾s (Base‘𝐻)))𝑥))) ∈ V →
(Scalar‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) = (Scalar‘(((ℝfldXs(𝐼 ×
{((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)) toNrmGrp (𝑥 ∈ (Base‘((ℝfldXs(𝐼 ×
{((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) ↦ (√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))
↾s (Base‘𝐻)))𝑥)))))) |
10 | 9 | eqcomd 2744 |
. . . 4
⊢ ((𝑥 ∈
(Base‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))) ↦
(√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))
↾s (Base‘𝐻)))𝑥))) ∈ V →
(Scalar‘(((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻)) toNrmGrp (𝑥
∈ (Base‘((ℝfldXs(𝐼 ×
{((subringAlg ‘ℝfld)‘ℝ)})) ↾s (Base‘𝐻))) ↦ (√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))
↾s (Base‘𝐻)))𝑥))))) = (Scalar‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))
↾s (Base‘𝐻)))) |
11 | 6, 10 | mp1i 13 |
. . 3
⊢ (𝐼 ∈ 𝑉 →
(Scalar‘(((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻)) toNrmGrp
(𝑥 ∈
(Base‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))) ↦
(√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))
↾s (Base‘𝐻)))𝑥))))) = (Scalar‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))
↾s (Base‘𝐻)))) |
12 | | eqid 2738 |
. . . . . 6
⊢
(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))) =
(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))) |
13 | | eqid 2738 |
. . . . . 6
⊢
(Base‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))) =
(Base‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))) |
14 | | eqid 2738 |
. . . . . 6
⊢
(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))) =
(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))) |
15 | 12, 13, 14 | tcphval 24287 |
. . . . 5
⊢
(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))) =
(((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻)) toNrmGrp
(𝑥 ∈
(Base‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))) ↦
(√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))
↾s (Base‘𝐻)))𝑥)))) |
16 | 15 | fveq2i 6759 |
. . . 4
⊢
(Scalar‘(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻)))) =
(Scalar‘(((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻)) toNrmGrp
(𝑥 ∈
(Base‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))) ↦
(√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))
↾s (Base‘𝐻)))𝑥))))) |
17 | 16 | a1i 11 |
. . 3
⊢ (𝐼 ∈ 𝑉 →
(Scalar‘(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻)))) =
(Scalar‘(((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻)) toNrmGrp
(𝑥 ∈
(Base‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻))) ↦
(√‘(𝑥(·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))
↾s (Base‘𝐻)))𝑥)))))) |
18 | | eqid 2738 |
. . . . 5
⊢
(ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) = (ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) |
19 | | refld 20736 |
. . . . . 6
⊢
ℝfld ∈ Field |
20 | 19 | a1i 11 |
. . . . 5
⊢ (𝐼 ∈ 𝑉 → ℝfld ∈
Field) |
21 | | id 22 |
. . . . . 6
⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ 𝑉) |
22 | | snex 5349 |
. . . . . . 7
⊢
{((subringAlg ‘ℝfld)‘ℝ)} ∈
V |
23 | 22 | a1i 11 |
. . . . . 6
⊢ (𝐼 ∈ 𝑉 → {((subringAlg
‘ℝfld)‘ℝ)} ∈ V) |
24 | 21, 23 | xpexd 7579 |
. . . . 5
⊢ (𝐼 ∈ 𝑉 → (𝐼 × {((subringAlg
‘ℝfld)‘ℝ)}) ∈ V) |
25 | 18, 20, 24 | prdssca 17084 |
. . . 4
⊢ (𝐼 ∈ 𝑉 → ℝfld =
(Scalar‘(ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})))) |
26 | | fvex 6769 |
. . . . 5
⊢
(Base‘𝐻)
∈ V |
27 | | eqid 2738 |
. . . . . 6
⊢
((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻)) =
((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻)) |
28 | | eqid 2738 |
. . . . . 6
⊢
(Scalar‘(ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)}))) =
(Scalar‘(ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)}))) |
29 | 27, 28 | resssca 16978 |
. . . . 5
⊢
((Base‘𝐻)
∈ V → (Scalar‘(ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)}))) =
(Scalar‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻)))) |
30 | 26, 29 | mp1i 13 |
. . . 4
⊢ (𝐼 ∈ 𝑉 →
(Scalar‘(ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)}))) =
(Scalar‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻)))) |
31 | 25, 30 | eqtrd 2778 |
. . 3
⊢ (𝐼 ∈ 𝑉 → ℝfld =
(Scalar‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻)))) |
32 | 11, 17, 31 | 3eqtr4d 2788 |
. 2
⊢ (𝐼 ∈ 𝑉 →
(Scalar‘(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg
‘ℝfld)‘ℝ)})) ↾s
(Base‘𝐻)))) =
ℝfld) |
33 | 4, 32 | eqtrd 2778 |
1
⊢ (𝐼 ∈ 𝑉 → (Scalar‘𝐻) = ℝfld) |