| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oppchomf | Structured version Visualization version GIF version | ||
| Description: Hom-sets of the opposite category. (Contributed by Mario Carneiro, 17-Jan-2017.) |
| Ref | Expression |
|---|---|
| oppcbas.1 | ⊢ 𝑂 = (oppCat‘𝐶) |
| oppchomf.h | ⊢ 𝐻 = (Homf ‘𝐶) |
| Ref | Expression |
|---|---|
| oppchomf | ⊢ tpos 𝐻 = (Homf ‘𝑂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 2 | oppcbas.1 | . . . . 5 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 3 | 1, 2 | oppchom 17621 | . . . 4 ⊢ (𝑦(Hom ‘𝑂)𝑥) = (𝑥(Hom ‘𝐶)𝑦) |
| 4 | 3 | a1i 11 | . . 3 ⊢ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑦(Hom ‘𝑂)𝑥) = (𝑥(Hom ‘𝐶)𝑦)) |
| 5 | 4 | mpoeq3ia 7424 | . 2 ⊢ (𝑦 ∈ (Base‘𝐶), 𝑥 ∈ (Base‘𝐶) ↦ (𝑦(Hom ‘𝑂)𝑥)) = (𝑦 ∈ (Base‘𝐶), 𝑥 ∈ (Base‘𝐶) ↦ (𝑥(Hom ‘𝐶)𝑦)) |
| 6 | eqid 2731 | . . 3 ⊢ (Homf ‘𝑂) = (Homf ‘𝑂) | |
| 7 | eqid 2731 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 8 | 2, 7 | oppcbas 17624 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝑂) |
| 9 | eqid 2731 | . . 3 ⊢ (Hom ‘𝑂) = (Hom ‘𝑂) | |
| 10 | 6, 8, 9 | homffval 17596 | . 2 ⊢ (Homf ‘𝑂) = (𝑦 ∈ (Base‘𝐶), 𝑥 ∈ (Base‘𝐶) ↦ (𝑦(Hom ‘𝑂)𝑥)) |
| 11 | oppchomf.h | . . . 4 ⊢ 𝐻 = (Homf ‘𝐶) | |
| 12 | 11, 7, 1 | homffval 17596 | . . 3 ⊢ 𝐻 = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(Hom ‘𝐶)𝑦)) |
| 13 | 12 | tposmpo 8193 | . 2 ⊢ tpos 𝐻 = (𝑦 ∈ (Base‘𝐶), 𝑥 ∈ (Base‘𝐶) ↦ (𝑥(Hom ‘𝐶)𝑦)) |
| 14 | 5, 10, 13 | 3eqtr4ri 2765 | 1 ⊢ tpos 𝐻 = (Homf ‘𝑂) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 tpos ctpos 8155 Basecbs 17120 Hom chom 17172 Homf chomf 17572 oppCatcoppc 17617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-hom 17185 df-cco 17186 df-homf 17576 df-oppc 17618 |
| This theorem is referenced by: 2oppchomf 17630 oppchomfpropd 17632 oppchofcl 18166 oyoncl 18176 oppcendc 49129 |
| Copyright terms: Public domain | W3C validator |