MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmettpos Structured version   Visualization version   GIF version

Theorem xmettpos 22524
Description: The distance function of an extended metric space is symmetric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmettpos (𝐷 ∈ (∞Met‘𝑋) → tpos 𝐷 = 𝐷)

Proof of Theorem xmettpos
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetsym 22522 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
213expb 1155 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
32ralrimivva 3180 . 2 (𝐷 ∈ (∞Met‘𝑋) → ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
4 xmetf 22504 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
5 ffn 6278 . . 3 (𝐷:(𝑋 × 𝑋)⟶ℝ*𝐷 Fn (𝑋 × 𝑋))
6 tpossym 7649 . . 3 (𝐷 Fn (𝑋 × 𝑋) → (tpos 𝐷 = 𝐷 ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = (𝑦𝐷𝑥)))
74, 5, 63syl 18 . 2 (𝐷 ∈ (∞Met‘𝑋) → (tpos 𝐷 = 𝐷 ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = (𝑦𝐷𝑥)))
83, 7mpbird 249 1 (𝐷 ∈ (∞Met‘𝑋) → tpos 𝐷 = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1658  wcel 2166  wral 3117   × cxp 5340   Fn wfn 6118  wf 6119  cfv 6123  (class class class)co 6905  tpos ctpos 7616  *cxr 10390  ∞Metcxmet 20091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-po 5263  df-so 5264  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-tpos 7617  df-er 8009  df-map 8124  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-xadd 12233  df-xmet 20099
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator