Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r1elwf | Structured version Visualization version GIF version |
Description: Any member of the cumulative hierarchy is well-founded. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
r1elwf | ⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝐴 ∈ ∪ (𝑅1 “ On)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1funlim 9455 | . . . . . 6 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
2 | 1 | simpri 485 | . . . . 5 ⊢ Lim dom 𝑅1 |
3 | limord 6310 | . . . . 5 ⊢ (Lim dom 𝑅1 → Ord dom 𝑅1) | |
4 | ordsson 7610 | . . . . 5 ⊢ (Ord dom 𝑅1 → dom 𝑅1 ⊆ On) | |
5 | 2, 3, 4 | mp2b 10 | . . . 4 ⊢ dom 𝑅1 ⊆ On |
6 | elfvdm 6788 | . . . 4 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝐵 ∈ dom 𝑅1) | |
7 | 5, 6 | sselid 3915 | . . 3 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝐵 ∈ On) |
8 | r1tr 9465 | . . . . . 6 ⊢ Tr (𝑅1‘𝐵) | |
9 | trss 5196 | . . . . . 6 ⊢ (Tr (𝑅1‘𝐵) → (𝐴 ∈ (𝑅1‘𝐵) → 𝐴 ⊆ (𝑅1‘𝐵))) | |
10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝐴 ⊆ (𝑅1‘𝐵)) |
11 | elpwg 4533 | . . . . 5 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → (𝐴 ∈ 𝒫 (𝑅1‘𝐵) ↔ 𝐴 ⊆ (𝑅1‘𝐵))) | |
12 | 10, 11 | mpbird 256 | . . . 4 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝐴 ∈ 𝒫 (𝑅1‘𝐵)) |
13 | r1sucg 9458 | . . . . 5 ⊢ (𝐵 ∈ dom 𝑅1 → (𝑅1‘suc 𝐵) = 𝒫 (𝑅1‘𝐵)) | |
14 | 6, 13 | syl 17 | . . . 4 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → (𝑅1‘suc 𝐵) = 𝒫 (𝑅1‘𝐵)) |
15 | 12, 14 | eleqtrrd 2842 | . . 3 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝐴 ∈ (𝑅1‘suc 𝐵)) |
16 | suceq 6316 | . . . . . 6 ⊢ (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵) | |
17 | 16 | fveq2d 6760 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑅1‘suc 𝑥) = (𝑅1‘suc 𝐵)) |
18 | 17 | eleq2d 2824 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ∈ (𝑅1‘suc 𝑥) ↔ 𝐴 ∈ (𝑅1‘suc 𝐵))) |
19 | 18 | rspcev 3552 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ (𝑅1‘suc 𝐵)) → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥)) |
20 | 7, 15, 19 | syl2anc 583 | . 2 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥)) |
21 | rankwflemb 9482 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥)) | |
22 | 20, 21 | sylibr 233 | 1 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝐴 ∈ ∪ (𝑅1 “ On)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 Tr wtr 5187 dom cdm 5580 “ cima 5583 Ord word 6250 Oncon0 6251 Lim wlim 6252 suc csuc 6253 Fun wfun 6412 ‘cfv 6418 𝑅1cr1 9451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-r1 9453 |
This theorem is referenced by: rankr1ai 9487 pwwf 9496 sswf 9497 unwf 9499 uniwf 9508 rankonidlem 9517 r1pw 9534 r1pwcl 9536 rankr1id 9551 tcrank 9573 dfac12lem2 9831 r1limwun 10423 r1wunlim 10424 inatsk 10465 |
Copyright terms: Public domain | W3C validator |