MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1elwf Structured version   Visualization version   GIF version

Theorem r1elwf 9692
Description: Any member of the cumulative hierarchy is well-founded. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1elwf (𝐴 ∈ (𝑅1𝐵) → 𝐴 (𝑅1 “ On))

Proof of Theorem r1elwf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 r1funlim 9662 . . . . . 6 (Fun 𝑅1 ∧ Lim dom 𝑅1)
21simpri 485 . . . . 5 Lim dom 𝑅1
3 limord 6368 . . . . 5 (Lim dom 𝑅1 → Ord dom 𝑅1)
4 ordsson 7719 . . . . 5 (Ord dom 𝑅1 → dom 𝑅1 ⊆ On)
52, 3, 4mp2b 10 . . . 4 dom 𝑅1 ⊆ On
6 elfvdm 6857 . . . 4 (𝐴 ∈ (𝑅1𝐵) → 𝐵 ∈ dom 𝑅1)
75, 6sselid 3933 . . 3 (𝐴 ∈ (𝑅1𝐵) → 𝐵 ∈ On)
8 r1tr 9672 . . . . . 6 Tr (𝑅1𝐵)
9 trss 5209 . . . . . 6 (Tr (𝑅1𝐵) → (𝐴 ∈ (𝑅1𝐵) → 𝐴 ⊆ (𝑅1𝐵)))
108, 9ax-mp 5 . . . . 5 (𝐴 ∈ (𝑅1𝐵) → 𝐴 ⊆ (𝑅1𝐵))
11 elpwg 4554 . . . . 5 (𝐴 ∈ (𝑅1𝐵) → (𝐴 ∈ 𝒫 (𝑅1𝐵) ↔ 𝐴 ⊆ (𝑅1𝐵)))
1210, 11mpbird 257 . . . 4 (𝐴 ∈ (𝑅1𝐵) → 𝐴 ∈ 𝒫 (𝑅1𝐵))
13 r1sucg 9665 . . . . 5 (𝐵 ∈ dom 𝑅1 → (𝑅1‘suc 𝐵) = 𝒫 (𝑅1𝐵))
146, 13syl 17 . . . 4 (𝐴 ∈ (𝑅1𝐵) → (𝑅1‘suc 𝐵) = 𝒫 (𝑅1𝐵))
1512, 14eleqtrrd 2831 . . 3 (𝐴 ∈ (𝑅1𝐵) → 𝐴 ∈ (𝑅1‘suc 𝐵))
16 suceq 6375 . . . . . 6 (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵)
1716fveq2d 6826 . . . . 5 (𝑥 = 𝐵 → (𝑅1‘suc 𝑥) = (𝑅1‘suc 𝐵))
1817eleq2d 2814 . . . 4 (𝑥 = 𝐵 → (𝐴 ∈ (𝑅1‘suc 𝑥) ↔ 𝐴 ∈ (𝑅1‘suc 𝐵)))
1918rspcev 3577 . . 3 ((𝐵 ∈ On ∧ 𝐴 ∈ (𝑅1‘suc 𝐵)) → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
207, 15, 19syl2anc 584 . 2 (𝐴 ∈ (𝑅1𝐵) → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
21 rankwflemb 9689 . 2 (𝐴 (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
2220, 21sylibr 234 1 (𝐴 ∈ (𝑅1𝐵) → 𝐴 (𝑅1 “ On))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wrex 3053  wss 3903  𝒫 cpw 4551   cuni 4858  Tr wtr 5199  dom cdm 5619  cima 5622  Ord word 6306  Oncon0 6307  Lim wlim 6308  suc csuc 6309  Fun wfun 6476  cfv 6482  𝑅1cr1 9658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-r1 9660
This theorem is referenced by:  rankr1ai  9694  pwwf  9703  sswf  9704  unwf  9706  uniwf  9715  rankonidlem  9724  r1pw  9741  r1pwcl  9743  rankr1id  9758  tcrank  9780  dfac12lem2  10039  r1limwun  10630  r1wunlim  10631  inatsk  10672
  Copyright terms: Public domain W3C validator