| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r1elwf | Structured version Visualization version GIF version | ||
| Description: Any member of the cumulative hierarchy is well-founded. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| r1elwf | ⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝐴 ∈ ∪ (𝑅1 “ On)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1funlim 9780 | . . . . . 6 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
| 2 | 1 | simpri 485 | . . . . 5 ⊢ Lim dom 𝑅1 |
| 3 | limord 6413 | . . . . 5 ⊢ (Lim dom 𝑅1 → Ord dom 𝑅1) | |
| 4 | ordsson 7777 | . . . . 5 ⊢ (Ord dom 𝑅1 → dom 𝑅1 ⊆ On) | |
| 5 | 2, 3, 4 | mp2b 10 | . . . 4 ⊢ dom 𝑅1 ⊆ On |
| 6 | elfvdm 6913 | . . . 4 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝐵 ∈ dom 𝑅1) | |
| 7 | 5, 6 | sselid 3956 | . . 3 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝐵 ∈ On) |
| 8 | r1tr 9790 | . . . . . 6 ⊢ Tr (𝑅1‘𝐵) | |
| 9 | trss 5240 | . . . . . 6 ⊢ (Tr (𝑅1‘𝐵) → (𝐴 ∈ (𝑅1‘𝐵) → 𝐴 ⊆ (𝑅1‘𝐵))) | |
| 10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝐴 ⊆ (𝑅1‘𝐵)) |
| 11 | elpwg 4578 | . . . . 5 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → (𝐴 ∈ 𝒫 (𝑅1‘𝐵) ↔ 𝐴 ⊆ (𝑅1‘𝐵))) | |
| 12 | 10, 11 | mpbird 257 | . . . 4 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝐴 ∈ 𝒫 (𝑅1‘𝐵)) |
| 13 | r1sucg 9783 | . . . . 5 ⊢ (𝐵 ∈ dom 𝑅1 → (𝑅1‘suc 𝐵) = 𝒫 (𝑅1‘𝐵)) | |
| 14 | 6, 13 | syl 17 | . . . 4 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → (𝑅1‘suc 𝐵) = 𝒫 (𝑅1‘𝐵)) |
| 15 | 12, 14 | eleqtrrd 2837 | . . 3 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝐴 ∈ (𝑅1‘suc 𝐵)) |
| 16 | suceq 6419 | . . . . . 6 ⊢ (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵) | |
| 17 | 16 | fveq2d 6880 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑅1‘suc 𝑥) = (𝑅1‘suc 𝐵)) |
| 18 | 17 | eleq2d 2820 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ∈ (𝑅1‘suc 𝑥) ↔ 𝐴 ∈ (𝑅1‘suc 𝐵))) |
| 19 | 18 | rspcev 3601 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ (𝑅1‘suc 𝐵)) → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥)) |
| 20 | 7, 15, 19 | syl2anc 584 | . 2 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥)) |
| 21 | rankwflemb 9807 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥)) | |
| 22 | 20, 21 | sylibr 234 | 1 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝐴 ∈ ∪ (𝑅1 “ On)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 ⊆ wss 3926 𝒫 cpw 4575 ∪ cuni 4883 Tr wtr 5229 dom cdm 5654 “ cima 5657 Ord word 6351 Oncon0 6352 Lim wlim 6353 suc csuc 6354 Fun wfun 6525 ‘cfv 6531 𝑅1cr1 9776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-r1 9778 |
| This theorem is referenced by: rankr1ai 9812 pwwf 9821 sswf 9822 unwf 9824 uniwf 9833 rankonidlem 9842 r1pw 9859 r1pwcl 9861 rankr1id 9876 tcrank 9898 dfac12lem2 10159 r1limwun 10750 r1wunlim 10751 inatsk 10792 |
| Copyright terms: Public domain | W3C validator |