| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r1elwf | Structured version Visualization version GIF version | ||
| Description: Any member of the cumulative hierarchy is well-founded. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| r1elwf | ⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝐴 ∈ ∪ (𝑅1 “ On)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1funlim 9719 | . . . . . 6 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
| 2 | 1 | simpri 485 | . . . . 5 ⊢ Lim dom 𝑅1 |
| 3 | limord 6393 | . . . . 5 ⊢ (Lim dom 𝑅1 → Ord dom 𝑅1) | |
| 4 | ordsson 7759 | . . . . 5 ⊢ (Ord dom 𝑅1 → dom 𝑅1 ⊆ On) | |
| 5 | 2, 3, 4 | mp2b 10 | . . . 4 ⊢ dom 𝑅1 ⊆ On |
| 6 | elfvdm 6895 | . . . 4 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝐵 ∈ dom 𝑅1) | |
| 7 | 5, 6 | sselid 3944 | . . 3 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝐵 ∈ On) |
| 8 | r1tr 9729 | . . . . . 6 ⊢ Tr (𝑅1‘𝐵) | |
| 9 | trss 5225 | . . . . . 6 ⊢ (Tr (𝑅1‘𝐵) → (𝐴 ∈ (𝑅1‘𝐵) → 𝐴 ⊆ (𝑅1‘𝐵))) | |
| 10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝐴 ⊆ (𝑅1‘𝐵)) |
| 11 | elpwg 4566 | . . . . 5 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → (𝐴 ∈ 𝒫 (𝑅1‘𝐵) ↔ 𝐴 ⊆ (𝑅1‘𝐵))) | |
| 12 | 10, 11 | mpbird 257 | . . . 4 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝐴 ∈ 𝒫 (𝑅1‘𝐵)) |
| 13 | r1sucg 9722 | . . . . 5 ⊢ (𝐵 ∈ dom 𝑅1 → (𝑅1‘suc 𝐵) = 𝒫 (𝑅1‘𝐵)) | |
| 14 | 6, 13 | syl 17 | . . . 4 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → (𝑅1‘suc 𝐵) = 𝒫 (𝑅1‘𝐵)) |
| 15 | 12, 14 | eleqtrrd 2831 | . . 3 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝐴 ∈ (𝑅1‘suc 𝐵)) |
| 16 | suceq 6400 | . . . . . 6 ⊢ (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵) | |
| 17 | 16 | fveq2d 6862 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑅1‘suc 𝑥) = (𝑅1‘suc 𝐵)) |
| 18 | 17 | eleq2d 2814 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ∈ (𝑅1‘suc 𝑥) ↔ 𝐴 ∈ (𝑅1‘suc 𝐵))) |
| 19 | 18 | rspcev 3588 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ (𝑅1‘suc 𝐵)) → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥)) |
| 20 | 7, 15, 19 | syl2anc 584 | . 2 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥)) |
| 21 | rankwflemb 9746 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥)) | |
| 22 | 20, 21 | sylibr 234 | 1 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝐴 ∈ ∪ (𝑅1 “ On)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3914 𝒫 cpw 4563 ∪ cuni 4871 Tr wtr 5214 dom cdm 5638 “ cima 5641 Ord word 6331 Oncon0 6332 Lim wlim 6333 suc csuc 6334 Fun wfun 6505 ‘cfv 6511 𝑅1cr1 9715 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-r1 9717 |
| This theorem is referenced by: rankr1ai 9751 pwwf 9760 sswf 9761 unwf 9763 uniwf 9772 rankonidlem 9781 r1pw 9798 r1pwcl 9800 rankr1id 9815 tcrank 9837 dfac12lem2 10098 r1limwun 10689 r1wunlim 10690 inatsk 10731 |
| Copyright terms: Public domain | W3C validator |