Step | Hyp | Ref
| Expression |
1 | | simpl 483 |
. . 3
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β π½ β (TopOnβπ)) |
2 | | simpr 485 |
. . 3
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β πΎ β (TopOnβπ)) |
3 | 1, 2 | cnmpt2nd 23164 |
. . 3
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (π₯ β π, π¦ β π β¦ π¦) β ((π½ Γt πΎ) Cn πΎ)) |
4 | 1, 2 | cnmpt1st 23163 |
. . 3
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (π₯ β π, π¦ β π β¦ π₯) β ((π½ Γt πΎ) Cn π½)) |
5 | 1, 2, 3, 4 | cnmpt2t 23168 |
. 2
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (π₯ β π, π¦ β π β¦ β¨π¦, π₯β©) β ((π½ Γt πΎ) Cn (πΎ Γt π½))) |
6 | | opelxpi 5712 |
. . . . . . . . 9
β’ ((π¦ β π β§ π₯ β π) β β¨π¦, π₯β© β (π Γ π)) |
7 | 6 | ancoms 459 |
. . . . . . . 8
β’ ((π₯ β π β§ π¦ β π) β β¨π¦, π₯β© β (π Γ π)) |
8 | 7 | adantl 482 |
. . . . . . 7
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (π₯ β π β§ π¦ β π)) β β¨π¦, π₯β© β (π Γ π)) |
9 | 8 | ralrimivva 3200 |
. . . . . 6
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β βπ₯ β π βπ¦ β π β¨π¦, π₯β© β (π Γ π)) |
10 | | eqid 2732 |
. . . . . . 7
β’ (π₯ β π, π¦ β π β¦ β¨π¦, π₯β©) = (π₯ β π, π¦ β π β¦ β¨π¦, π₯β©) |
11 | 10 | fmpo 8050 |
. . . . . 6
β’
(βπ₯ β
π βπ¦ β π β¨π¦, π₯β© β (π Γ π) β (π₯ β π, π¦ β π β¦ β¨π¦, π₯β©):(π Γ π)βΆ(π Γ π)) |
12 | 9, 11 | sylib 217 |
. . . . 5
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (π₯ β π, π¦ β π β¦ β¨π¦, π₯β©):(π Γ π)βΆ(π Γ π)) |
13 | | opelxpi 5712 |
. . . . . . . . 9
β’ ((π₯ β π β§ π¦ β π) β β¨π₯, π¦β© β (π Γ π)) |
14 | 13 | ancoms 459 |
. . . . . . . 8
β’ ((π¦ β π β§ π₯ β π) β β¨π₯, π¦β© β (π Γ π)) |
15 | 14 | adantl 482 |
. . . . . . 7
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (π¦ β π β§ π₯ β π)) β β¨π₯, π¦β© β (π Γ π)) |
16 | 15 | ralrimivva 3200 |
. . . . . 6
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β βπ¦ β π βπ₯ β π β¨π₯, π¦β© β (π Γ π)) |
17 | | eqid 2732 |
. . . . . . 7
β’ (π¦ β π, π₯ β π β¦ β¨π₯, π¦β©) = (π¦ β π, π₯ β π β¦ β¨π₯, π¦β©) |
18 | 17 | fmpo 8050 |
. . . . . 6
β’
(βπ¦ β
π βπ₯ β π β¨π₯, π¦β© β (π Γ π) β (π¦ β π, π₯ β π β¦ β¨π₯, π¦β©):(π Γ π)βΆ(π Γ π)) |
19 | 16, 18 | sylib 217 |
. . . . 5
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (π¦ β π, π₯ β π β¦ β¨π₯, π¦β©):(π Γ π)βΆ(π Γ π)) |
20 | | txswaphmeolem 23299 |
. . . . . 6
β’ ((π₯ β π, π¦ β π β¦ β¨π¦, π₯β©) β (π¦ β π, π₯ β π β¦ β¨π₯, π¦β©)) = ( I βΎ (π Γ π)) |
21 | | txswaphmeolem 23299 |
. . . . . 6
β’ ((π¦ β π, π₯ β π β¦ β¨π₯, π¦β©) β (π₯ β π, π¦ β π β¦ β¨π¦, π₯β©)) = ( I βΎ (π Γ π)) |
22 | | fcof1o 7290 |
. . . . . 6
β’ ((((π₯ β π, π¦ β π β¦ β¨π¦, π₯β©):(π Γ π)βΆ(π Γ π) β§ (π¦ β π, π₯ β π β¦ β¨π₯, π¦β©):(π Γ π)βΆ(π Γ π)) β§ (((π₯ β π, π¦ β π β¦ β¨π¦, π₯β©) β (π¦ β π, π₯ β π β¦ β¨π₯, π¦β©)) = ( I βΎ (π Γ π)) β§ ((π¦ β π, π₯ β π β¦ β¨π₯, π¦β©) β (π₯ β π, π¦ β π β¦ β¨π¦, π₯β©)) = ( I βΎ (π Γ π)))) β ((π₯ β π, π¦ β π β¦ β¨π¦, π₯β©):(π Γ π)β1-1-ontoβ(π Γ π) β§ β‘(π₯ β π, π¦ β π β¦ β¨π¦, π₯β©) = (π¦ β π, π₯ β π β¦ β¨π₯, π¦β©))) |
23 | 20, 21, 22 | mpanr12 703 |
. . . . 5
β’ (((π₯ β π, π¦ β π β¦ β¨π¦, π₯β©):(π Γ π)βΆ(π Γ π) β§ (π¦ β π, π₯ β π β¦ β¨π₯, π¦β©):(π Γ π)βΆ(π Γ π)) β ((π₯ β π, π¦ β π β¦ β¨π¦, π₯β©):(π Γ π)β1-1-ontoβ(π Γ π) β§ β‘(π₯ β π, π¦ β π β¦ β¨π¦, π₯β©) = (π¦ β π, π₯ β π β¦ β¨π₯, π¦β©))) |
24 | 12, 19, 23 | syl2anc 584 |
. . . 4
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β ((π₯ β π, π¦ β π β¦ β¨π¦, π₯β©):(π Γ π)β1-1-ontoβ(π Γ π) β§ β‘(π₯ β π, π¦ β π β¦ β¨π¦, π₯β©) = (π¦ β π, π₯ β π β¦ β¨π₯, π¦β©))) |
25 | 24 | simprd 496 |
. . 3
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β β‘(π₯ β π, π¦ β π β¦ β¨π¦, π₯β©) = (π¦ β π, π₯ β π β¦ β¨π₯, π¦β©)) |
26 | 2, 1 | cnmpt2nd 23164 |
. . . 4
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (π¦ β π, π₯ β π β¦ π₯) β ((πΎ Γt π½) Cn π½)) |
27 | 2, 1 | cnmpt1st 23163 |
. . . 4
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (π¦ β π, π₯ β π β¦ π¦) β ((πΎ Γt π½) Cn πΎ)) |
28 | 2, 1, 26, 27 | cnmpt2t 23168 |
. . 3
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (π¦ β π, π₯ β π β¦ β¨π₯, π¦β©) β ((πΎ Γt π½) Cn (π½ Γt πΎ))) |
29 | 25, 28 | eqeltrd 2833 |
. 2
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β β‘(π₯ β π, π¦ β π β¦ β¨π¦, π₯β©) β ((πΎ Γt π½) Cn (π½ Γt πΎ))) |
30 | | ishmeo 23254 |
. 2
β’ ((π₯ β π, π¦ β π β¦ β¨π¦, π₯β©) β ((π½ Γt πΎ)Homeo(πΎ Γt π½)) β ((π₯ β π, π¦ β π β¦ β¨π¦, π₯β©) β ((π½ Γt πΎ) Cn (πΎ Γt π½)) β§ β‘(π₯ β π, π¦ β π β¦ β¨π¦, π₯β©) β ((πΎ Γt π½) Cn (π½ Γt πΎ)))) |
31 | 5, 29, 30 | sylanbrc 583 |
1
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (π₯ β π, π¦ β π β¦ β¨π¦, π₯β©) β ((π½ Γt πΎ)Homeo(πΎ Γt π½))) |