MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txswaphmeo Structured version   Visualization version   GIF version

Theorem txswaphmeo 23758
Description: There is a homeomorphism from 𝑋 × 𝑌 to 𝑌 × 𝑋. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
txswaphmeo ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∈ ((𝐽 ×t 𝐾)Homeo(𝐾 ×t 𝐽)))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦

Proof of Theorem txswaphmeo
StepHypRef Expression
1 simpl 481 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝐽 ∈ (TopOn‘𝑋))
2 simpr 483 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝐾 ∈ (TopOn‘𝑌))
31, 2cnmpt2nd 23622 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋, 𝑦𝑌𝑦) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
41, 2cnmpt1st 23621 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋, 𝑦𝑌𝑥) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
51, 2, 3, 4cnmpt2t 23626 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∈ ((𝐽 ×t 𝐾) Cn (𝐾 ×t 𝐽)))
6 opelxpi 5715 . . . . . . . . 9 ((𝑦𝑌𝑥𝑋) → ⟨𝑦, 𝑥⟩ ∈ (𝑌 × 𝑋))
76ancoms 457 . . . . . . . 8 ((𝑥𝑋𝑦𝑌) → ⟨𝑦, 𝑥⟩ ∈ (𝑌 × 𝑋))
87adantl 480 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑥𝑋𝑦𝑌)) → ⟨𝑦, 𝑥⟩ ∈ (𝑌 × 𝑋))
98ralrimivva 3190 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ∀𝑥𝑋𝑦𝑌𝑦, 𝑥⟩ ∈ (𝑌 × 𝑋))
10 eqid 2725 . . . . . . 7 (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩)
1110fmpo 8073 . . . . . 6 (∀𝑥𝑋𝑦𝑌𝑦, 𝑥⟩ ∈ (𝑌 × 𝑋) ↔ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩):(𝑋 × 𝑌)⟶(𝑌 × 𝑋))
129, 11sylib 217 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩):(𝑋 × 𝑌)⟶(𝑌 × 𝑋))
13 opelxpi 5715 . . . . . . . . 9 ((𝑥𝑋𝑦𝑌) → ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑌))
1413ancoms 457 . . . . . . . 8 ((𝑦𝑌𝑥𝑋) → ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑌))
1514adantl 480 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑦𝑌𝑥𝑋)) → ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑌))
1615ralrimivva 3190 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ∀𝑦𝑌𝑥𝑋𝑥, 𝑦⟩ ∈ (𝑋 × 𝑌))
17 eqid 2725 . . . . . . 7 (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩) = (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩)
1817fmpo 8073 . . . . . 6 (∀𝑦𝑌𝑥𝑋𝑥, 𝑦⟩ ∈ (𝑋 × 𝑌) ↔ (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩):(𝑌 × 𝑋)⟶(𝑋 × 𝑌))
1916, 18sylib 217 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩):(𝑌 × 𝑋)⟶(𝑋 × 𝑌))
20 txswaphmeolem 23757 . . . . . 6 ((𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∘ (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩)) = ( I ↾ (𝑌 × 𝑋))
21 txswaphmeolem 23757 . . . . . 6 ((𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩)) = ( I ↾ (𝑋 × 𝑌))
22 fcof1o 7305 . . . . . 6 ((((𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩):(𝑋 × 𝑌)⟶(𝑌 × 𝑋) ∧ (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩):(𝑌 × 𝑋)⟶(𝑋 × 𝑌)) ∧ (((𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∘ (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩)) = ( I ↾ (𝑌 × 𝑋)) ∧ ((𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩)) = ( I ↾ (𝑋 × 𝑌)))) → ((𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩):(𝑋 × 𝑌)–1-1-onto→(𝑌 × 𝑋) ∧ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) = (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩)))
2320, 21, 22mpanr12 703 . . . . 5 (((𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩):(𝑋 × 𝑌)⟶(𝑌 × 𝑋) ∧ (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩):(𝑌 × 𝑋)⟶(𝑋 × 𝑌)) → ((𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩):(𝑋 × 𝑌)–1-1-onto→(𝑌 × 𝑋) ∧ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) = (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩)))
2412, 19, 23syl2anc 582 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩):(𝑋 × 𝑌)–1-1-onto→(𝑌 × 𝑋) ∧ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) = (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩)))
2524simprd 494 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) = (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩))
262, 1cnmpt2nd 23622 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑦𝑌, 𝑥𝑋𝑥) ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
272, 1cnmpt1st 23621 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑦𝑌, 𝑥𝑋𝑦) ∈ ((𝐾 ×t 𝐽) Cn 𝐾))
282, 1, 26, 27cnmpt2t 23626 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩) ∈ ((𝐾 ×t 𝐽) Cn (𝐽 ×t 𝐾)))
2925, 28eqeltrd 2825 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∈ ((𝐾 ×t 𝐽) Cn (𝐽 ×t 𝐾)))
30 ishmeo 23712 . 2 ((𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∈ ((𝐽 ×t 𝐾)Homeo(𝐾 ×t 𝐽)) ↔ ((𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∈ ((𝐽 ×t 𝐾) Cn (𝐾 ×t 𝐽)) ∧ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∈ ((𝐾 ×t 𝐽) Cn (𝐽 ×t 𝐾))))
315, 29, 30sylanbrc 581 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∈ ((𝐽 ×t 𝐾)Homeo(𝐾 ×t 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wral 3050  cop 4636   I cid 5575   × cxp 5676  ccnv 5677  cres 5680  ccom 5682  wf 6545  1-1-ontowf1o 6548  cfv 6549  (class class class)co 7419  cmpo 7421  TopOnctopon 22861   Cn ccn 23177   ×t ctx 23513  Homeochmeo 23706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-1st 7994  df-2nd 7995  df-map 8847  df-topgen 17433  df-top 22845  df-topon 22862  df-bases 22898  df-cn 23180  df-tx 23515  df-hmeo 23708
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator