| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mbfmco | Structured version Visualization version GIF version | ||
| Description: The composition of two measurable functions is measurable. See cnmpt11 23557. (Contributed by Thierry Arnoux, 4-Jun-2017.) |
| Ref | Expression |
|---|---|
| mbfmco.1 | ⊢ (𝜑 → 𝑅 ∈ ∪ ran sigAlgebra) |
| mbfmco.2 | ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
| mbfmco.3 | ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) |
| mbfmco.4 | ⊢ (𝜑 → 𝐹 ∈ (𝑅MblFnM𝑆)) |
| mbfmco.5 | ⊢ (𝜑 → 𝐺 ∈ (𝑆MblFnM𝑇)) |
| Ref | Expression |
|---|---|
| mbfmco | ⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ (𝑅MblFnM𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfmco.2 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) | |
| 2 | mbfmco.3 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) | |
| 3 | mbfmco.5 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (𝑆MblFnM𝑇)) | |
| 4 | 1, 2, 3 | mbfmf 34251 | . . . 4 ⊢ (𝜑 → 𝐺:∪ 𝑆⟶∪ 𝑇) |
| 5 | mbfmco.1 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ ∪ ran sigAlgebra) | |
| 6 | mbfmco.4 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝑅MblFnM𝑆)) | |
| 7 | 5, 1, 6 | mbfmf 34251 | . . . 4 ⊢ (𝜑 → 𝐹:∪ 𝑅⟶∪ 𝑆) |
| 8 | fco 6715 | . . . 4 ⊢ ((𝐺:∪ 𝑆⟶∪ 𝑇 ∧ 𝐹:∪ 𝑅⟶∪ 𝑆) → (𝐺 ∘ 𝐹):∪ 𝑅⟶∪ 𝑇) | |
| 9 | 4, 7, 8 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐺 ∘ 𝐹):∪ 𝑅⟶∪ 𝑇) |
| 10 | unielsiga 34125 | . . . . 5 ⊢ (𝑇 ∈ ∪ ran sigAlgebra → ∪ 𝑇 ∈ 𝑇) | |
| 11 | 2, 10 | syl 17 | . . . 4 ⊢ (𝜑 → ∪ 𝑇 ∈ 𝑇) |
| 12 | unielsiga 34125 | . . . . 5 ⊢ (𝑅 ∈ ∪ ran sigAlgebra → ∪ 𝑅 ∈ 𝑅) | |
| 13 | 5, 12 | syl 17 | . . . 4 ⊢ (𝜑 → ∪ 𝑅 ∈ 𝑅) |
| 14 | 11, 13 | elmapd 8816 | . . 3 ⊢ (𝜑 → ((𝐺 ∘ 𝐹) ∈ (∪ 𝑇 ↑m ∪ 𝑅) ↔ (𝐺 ∘ 𝐹):∪ 𝑅⟶∪ 𝑇)) |
| 15 | 9, 14 | mpbird 257 | . 2 ⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ (∪ 𝑇 ↑m ∪ 𝑅)) |
| 16 | cnvco 5852 | . . . . . 6 ⊢ ◡(𝐺 ∘ 𝐹) = (◡𝐹 ∘ ◡𝐺) | |
| 17 | 16 | imaeq1i 6031 | . . . . 5 ⊢ (◡(𝐺 ∘ 𝐹) “ 𝑎) = ((◡𝐹 ∘ ◡𝐺) “ 𝑎) |
| 18 | imaco 6227 | . . . . 5 ⊢ ((◡𝐹 ∘ ◡𝐺) “ 𝑎) = (◡𝐹 “ (◡𝐺 “ 𝑎)) | |
| 19 | 17, 18 | eqtri 2753 | . . . 4 ⊢ (◡(𝐺 ∘ 𝐹) “ 𝑎) = (◡𝐹 “ (◡𝐺 “ 𝑎)) |
| 20 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → 𝑅 ∈ ∪ ran sigAlgebra) |
| 21 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → 𝑆 ∈ ∪ ran sigAlgebra) |
| 22 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → 𝐹 ∈ (𝑅MblFnM𝑆)) |
| 23 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → 𝑇 ∈ ∪ ran sigAlgebra) |
| 24 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → 𝐺 ∈ (𝑆MblFnM𝑇)) |
| 25 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → 𝑎 ∈ 𝑇) | |
| 26 | 21, 23, 24, 25 | mbfmcnvima 34253 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → (◡𝐺 “ 𝑎) ∈ 𝑆) |
| 27 | 20, 21, 22, 26 | mbfmcnvima 34253 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → (◡𝐹 “ (◡𝐺 “ 𝑎)) ∈ 𝑅) |
| 28 | 19, 27 | eqeltrid 2833 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → (◡(𝐺 ∘ 𝐹) “ 𝑎) ∈ 𝑅) |
| 29 | 28 | ralrimiva 3126 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝑇 (◡(𝐺 ∘ 𝐹) “ 𝑎) ∈ 𝑅) |
| 30 | 5, 2 | ismbfm 34248 | . 2 ⊢ (𝜑 → ((𝐺 ∘ 𝐹) ∈ (𝑅MblFnM𝑇) ↔ ((𝐺 ∘ 𝐹) ∈ (∪ 𝑇 ↑m ∪ 𝑅) ∧ ∀𝑎 ∈ 𝑇 (◡(𝐺 ∘ 𝐹) “ 𝑎) ∈ 𝑅))) |
| 31 | 15, 29, 30 | mpbir2and 713 | 1 ⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ (𝑅MblFnM𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 ∪ cuni 4874 ◡ccnv 5640 ran crn 5642 “ cima 5644 ∘ ccom 5645 ⟶wf 6510 (class class class)co 7390 ↑m cmap 8802 sigAlgebracsiga 34105 MblFnMcmbfm 34246 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-map 8804 df-siga 34106 df-mbfm 34247 |
| This theorem is referenced by: rrvadd 34450 rrvmulc 34451 |
| Copyright terms: Public domain | W3C validator |