| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mbfmco | Structured version Visualization version GIF version | ||
| Description: The composition of two measurable functions is measurable. See cnmpt11 23606. (Contributed by Thierry Arnoux, 4-Jun-2017.) |
| Ref | Expression |
|---|---|
| mbfmco.1 | ⊢ (𝜑 → 𝑅 ∈ ∪ ran sigAlgebra) |
| mbfmco.2 | ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
| mbfmco.3 | ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) |
| mbfmco.4 | ⊢ (𝜑 → 𝐹 ∈ (𝑅MblFnM𝑆)) |
| mbfmco.5 | ⊢ (𝜑 → 𝐺 ∈ (𝑆MblFnM𝑇)) |
| Ref | Expression |
|---|---|
| mbfmco | ⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ (𝑅MblFnM𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfmco.2 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) | |
| 2 | mbfmco.3 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) | |
| 3 | mbfmco.5 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (𝑆MblFnM𝑇)) | |
| 4 | 1, 2, 3 | mbfmf 34290 | . . . 4 ⊢ (𝜑 → 𝐺:∪ 𝑆⟶∪ 𝑇) |
| 5 | mbfmco.1 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ ∪ ran sigAlgebra) | |
| 6 | mbfmco.4 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝑅MblFnM𝑆)) | |
| 7 | 5, 1, 6 | mbfmf 34290 | . . . 4 ⊢ (𝜑 → 𝐹:∪ 𝑅⟶∪ 𝑆) |
| 8 | fco 6735 | . . . 4 ⊢ ((𝐺:∪ 𝑆⟶∪ 𝑇 ∧ 𝐹:∪ 𝑅⟶∪ 𝑆) → (𝐺 ∘ 𝐹):∪ 𝑅⟶∪ 𝑇) | |
| 9 | 4, 7, 8 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐺 ∘ 𝐹):∪ 𝑅⟶∪ 𝑇) |
| 10 | unielsiga 34164 | . . . . 5 ⊢ (𝑇 ∈ ∪ ran sigAlgebra → ∪ 𝑇 ∈ 𝑇) | |
| 11 | 2, 10 | syl 17 | . . . 4 ⊢ (𝜑 → ∪ 𝑇 ∈ 𝑇) |
| 12 | unielsiga 34164 | . . . . 5 ⊢ (𝑅 ∈ ∪ ran sigAlgebra → ∪ 𝑅 ∈ 𝑅) | |
| 13 | 5, 12 | syl 17 | . . . 4 ⊢ (𝜑 → ∪ 𝑅 ∈ 𝑅) |
| 14 | 11, 13 | elmapd 8859 | . . 3 ⊢ (𝜑 → ((𝐺 ∘ 𝐹) ∈ (∪ 𝑇 ↑m ∪ 𝑅) ↔ (𝐺 ∘ 𝐹):∪ 𝑅⟶∪ 𝑇)) |
| 15 | 9, 14 | mpbird 257 | . 2 ⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ (∪ 𝑇 ↑m ∪ 𝑅)) |
| 16 | cnvco 5870 | . . . . . 6 ⊢ ◡(𝐺 ∘ 𝐹) = (◡𝐹 ∘ ◡𝐺) | |
| 17 | 16 | imaeq1i 6049 | . . . . 5 ⊢ (◡(𝐺 ∘ 𝐹) “ 𝑎) = ((◡𝐹 ∘ ◡𝐺) “ 𝑎) |
| 18 | imaco 6245 | . . . . 5 ⊢ ((◡𝐹 ∘ ◡𝐺) “ 𝑎) = (◡𝐹 “ (◡𝐺 “ 𝑎)) | |
| 19 | 17, 18 | eqtri 2759 | . . . 4 ⊢ (◡(𝐺 ∘ 𝐹) “ 𝑎) = (◡𝐹 “ (◡𝐺 “ 𝑎)) |
| 20 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → 𝑅 ∈ ∪ ran sigAlgebra) |
| 21 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → 𝑆 ∈ ∪ ran sigAlgebra) |
| 22 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → 𝐹 ∈ (𝑅MblFnM𝑆)) |
| 23 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → 𝑇 ∈ ∪ ran sigAlgebra) |
| 24 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → 𝐺 ∈ (𝑆MblFnM𝑇)) |
| 25 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → 𝑎 ∈ 𝑇) | |
| 26 | 21, 23, 24, 25 | mbfmcnvima 34292 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → (◡𝐺 “ 𝑎) ∈ 𝑆) |
| 27 | 20, 21, 22, 26 | mbfmcnvima 34292 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → (◡𝐹 “ (◡𝐺 “ 𝑎)) ∈ 𝑅) |
| 28 | 19, 27 | eqeltrid 2839 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → (◡(𝐺 ∘ 𝐹) “ 𝑎) ∈ 𝑅) |
| 29 | 28 | ralrimiva 3133 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝑇 (◡(𝐺 ∘ 𝐹) “ 𝑎) ∈ 𝑅) |
| 30 | 5, 2 | ismbfm 34287 | . 2 ⊢ (𝜑 → ((𝐺 ∘ 𝐹) ∈ (𝑅MblFnM𝑇) ↔ ((𝐺 ∘ 𝐹) ∈ (∪ 𝑇 ↑m ∪ 𝑅) ∧ ∀𝑎 ∈ 𝑇 (◡(𝐺 ∘ 𝐹) “ 𝑎) ∈ 𝑅))) |
| 31 | 15, 29, 30 | mpbir2and 713 | 1 ⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ (𝑅MblFnM𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3052 ∪ cuni 4888 ◡ccnv 5658 ran crn 5660 “ cima 5662 ∘ ccom 5663 ⟶wf 6532 (class class class)co 7410 ↑m cmap 8845 sigAlgebracsiga 34144 MblFnMcmbfm 34285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-map 8847 df-siga 34145 df-mbfm 34286 |
| This theorem is referenced by: rrvadd 34489 rrvmulc 34490 |
| Copyright terms: Public domain | W3C validator |