![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mbfmco | Structured version Visualization version GIF version |
Description: The composition of two measurable functions is measurable. See cnmpt11 23389. (Contributed by Thierry Arnoux, 4-Jun-2017.) |
Ref | Expression |
---|---|
mbfmco.1 | ⊢ (𝜑 → 𝑅 ∈ ∪ ran sigAlgebra) |
mbfmco.2 | ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
mbfmco.3 | ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) |
mbfmco.4 | ⊢ (𝜑 → 𝐹 ∈ (𝑅MblFnM𝑆)) |
mbfmco.5 | ⊢ (𝜑 → 𝐺 ∈ (𝑆MblFnM𝑇)) |
Ref | Expression |
---|---|
mbfmco | ⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ (𝑅MblFnM𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mbfmco.2 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) | |
2 | mbfmco.3 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) | |
3 | mbfmco.5 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (𝑆MblFnM𝑇)) | |
4 | 1, 2, 3 | mbfmf 33548 | . . . 4 ⊢ (𝜑 → 𝐺:∪ 𝑆⟶∪ 𝑇) |
5 | mbfmco.1 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ ∪ ran sigAlgebra) | |
6 | mbfmco.4 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝑅MblFnM𝑆)) | |
7 | 5, 1, 6 | mbfmf 33548 | . . . 4 ⊢ (𝜑 → 𝐹:∪ 𝑅⟶∪ 𝑆) |
8 | fco 6742 | . . . 4 ⊢ ((𝐺:∪ 𝑆⟶∪ 𝑇 ∧ 𝐹:∪ 𝑅⟶∪ 𝑆) → (𝐺 ∘ 𝐹):∪ 𝑅⟶∪ 𝑇) | |
9 | 4, 7, 8 | syl2anc 582 | . . 3 ⊢ (𝜑 → (𝐺 ∘ 𝐹):∪ 𝑅⟶∪ 𝑇) |
10 | unielsiga 33422 | . . . . 5 ⊢ (𝑇 ∈ ∪ ran sigAlgebra → ∪ 𝑇 ∈ 𝑇) | |
11 | 2, 10 | syl 17 | . . . 4 ⊢ (𝜑 → ∪ 𝑇 ∈ 𝑇) |
12 | unielsiga 33422 | . . . . 5 ⊢ (𝑅 ∈ ∪ ran sigAlgebra → ∪ 𝑅 ∈ 𝑅) | |
13 | 5, 12 | syl 17 | . . . 4 ⊢ (𝜑 → ∪ 𝑅 ∈ 𝑅) |
14 | 11, 13 | elmapd 8838 | . . 3 ⊢ (𝜑 → ((𝐺 ∘ 𝐹) ∈ (∪ 𝑇 ↑m ∪ 𝑅) ↔ (𝐺 ∘ 𝐹):∪ 𝑅⟶∪ 𝑇)) |
15 | 9, 14 | mpbird 256 | . 2 ⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ (∪ 𝑇 ↑m ∪ 𝑅)) |
16 | cnvco 5886 | . . . . . 6 ⊢ ◡(𝐺 ∘ 𝐹) = (◡𝐹 ∘ ◡𝐺) | |
17 | 16 | imaeq1i 6057 | . . . . 5 ⊢ (◡(𝐺 ∘ 𝐹) “ 𝑎) = ((◡𝐹 ∘ ◡𝐺) “ 𝑎) |
18 | imaco 6251 | . . . . 5 ⊢ ((◡𝐹 ∘ ◡𝐺) “ 𝑎) = (◡𝐹 “ (◡𝐺 “ 𝑎)) | |
19 | 17, 18 | eqtri 2758 | . . . 4 ⊢ (◡(𝐺 ∘ 𝐹) “ 𝑎) = (◡𝐹 “ (◡𝐺 “ 𝑎)) |
20 | 5 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → 𝑅 ∈ ∪ ran sigAlgebra) |
21 | 1 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → 𝑆 ∈ ∪ ran sigAlgebra) |
22 | 6 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → 𝐹 ∈ (𝑅MblFnM𝑆)) |
23 | 2 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → 𝑇 ∈ ∪ ran sigAlgebra) |
24 | 3 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → 𝐺 ∈ (𝑆MblFnM𝑇)) |
25 | simpr 483 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → 𝑎 ∈ 𝑇) | |
26 | 21, 23, 24, 25 | mbfmcnvima 33550 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → (◡𝐺 “ 𝑎) ∈ 𝑆) |
27 | 20, 21, 22, 26 | mbfmcnvima 33550 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → (◡𝐹 “ (◡𝐺 “ 𝑎)) ∈ 𝑅) |
28 | 19, 27 | eqeltrid 2835 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → (◡(𝐺 ∘ 𝐹) “ 𝑎) ∈ 𝑅) |
29 | 28 | ralrimiva 3144 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝑇 (◡(𝐺 ∘ 𝐹) “ 𝑎) ∈ 𝑅) |
30 | 5, 2 | ismbfm 33545 | . 2 ⊢ (𝜑 → ((𝐺 ∘ 𝐹) ∈ (𝑅MblFnM𝑇) ↔ ((𝐺 ∘ 𝐹) ∈ (∪ 𝑇 ↑m ∪ 𝑅) ∧ ∀𝑎 ∈ 𝑇 (◡(𝐺 ∘ 𝐹) “ 𝑎) ∈ 𝑅))) |
31 | 15, 29, 30 | mpbir2and 709 | 1 ⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ (𝑅MblFnM𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2104 ∀wral 3059 ∪ cuni 4909 ◡ccnv 5676 ran crn 5678 “ cima 5680 ∘ ccom 5681 ⟶wf 6540 (class class class)co 7413 ↑m cmap 8824 sigAlgebracsiga 33402 MblFnMcmbfm 33543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7979 df-2nd 7980 df-map 8826 df-siga 33403 df-mbfm 33544 |
This theorem is referenced by: rrvadd 33747 rrvmulc 33748 |
Copyright terms: Public domain | W3C validator |