Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mbfmco Structured version   Visualization version   GIF version

Theorem mbfmco 33559
Description: The composition of two measurable functions is measurable. See cnmpt11 23389. (Contributed by Thierry Arnoux, 4-Jun-2017.)
Hypotheses
Ref Expression
mbfmco.1 (𝜑𝑅 ran sigAlgebra)
mbfmco.2 (𝜑𝑆 ran sigAlgebra)
mbfmco.3 (𝜑𝑇 ran sigAlgebra)
mbfmco.4 (𝜑𝐹 ∈ (𝑅MblFnM𝑆))
mbfmco.5 (𝜑𝐺 ∈ (𝑆MblFnM𝑇))
Assertion
Ref Expression
mbfmco (𝜑 → (𝐺𝐹) ∈ (𝑅MblFnM𝑇))

Proof of Theorem mbfmco
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 mbfmco.2 . . . . 5 (𝜑𝑆 ran sigAlgebra)
2 mbfmco.3 . . . . 5 (𝜑𝑇 ran sigAlgebra)
3 mbfmco.5 . . . . 5 (𝜑𝐺 ∈ (𝑆MblFnM𝑇))
41, 2, 3mbfmf 33548 . . . 4 (𝜑𝐺: 𝑆 𝑇)
5 mbfmco.1 . . . . 5 (𝜑𝑅 ran sigAlgebra)
6 mbfmco.4 . . . . 5 (𝜑𝐹 ∈ (𝑅MblFnM𝑆))
75, 1, 6mbfmf 33548 . . . 4 (𝜑𝐹: 𝑅 𝑆)
8 fco 6742 . . . 4 ((𝐺: 𝑆 𝑇𝐹: 𝑅 𝑆) → (𝐺𝐹): 𝑅 𝑇)
94, 7, 8syl2anc 582 . . 3 (𝜑 → (𝐺𝐹): 𝑅 𝑇)
10 unielsiga 33422 . . . . 5 (𝑇 ran sigAlgebra → 𝑇𝑇)
112, 10syl 17 . . . 4 (𝜑 𝑇𝑇)
12 unielsiga 33422 . . . . 5 (𝑅 ran sigAlgebra → 𝑅𝑅)
135, 12syl 17 . . . 4 (𝜑 𝑅𝑅)
1411, 13elmapd 8838 . . 3 (𝜑 → ((𝐺𝐹) ∈ ( 𝑇m 𝑅) ↔ (𝐺𝐹): 𝑅 𝑇))
159, 14mpbird 256 . 2 (𝜑 → (𝐺𝐹) ∈ ( 𝑇m 𝑅))
16 cnvco 5886 . . . . . 6 (𝐺𝐹) = (𝐹𝐺)
1716imaeq1i 6057 . . . . 5 ((𝐺𝐹) “ 𝑎) = ((𝐹𝐺) “ 𝑎)
18 imaco 6251 . . . . 5 ((𝐹𝐺) “ 𝑎) = (𝐹 “ (𝐺𝑎))
1917, 18eqtri 2758 . . . 4 ((𝐺𝐹) “ 𝑎) = (𝐹 “ (𝐺𝑎))
205adantr 479 . . . . 5 ((𝜑𝑎𝑇) → 𝑅 ran sigAlgebra)
211adantr 479 . . . . 5 ((𝜑𝑎𝑇) → 𝑆 ran sigAlgebra)
226adantr 479 . . . . 5 ((𝜑𝑎𝑇) → 𝐹 ∈ (𝑅MblFnM𝑆))
232adantr 479 . . . . . 6 ((𝜑𝑎𝑇) → 𝑇 ran sigAlgebra)
243adantr 479 . . . . . 6 ((𝜑𝑎𝑇) → 𝐺 ∈ (𝑆MblFnM𝑇))
25 simpr 483 . . . . . 6 ((𝜑𝑎𝑇) → 𝑎𝑇)
2621, 23, 24, 25mbfmcnvima 33550 . . . . 5 ((𝜑𝑎𝑇) → (𝐺𝑎) ∈ 𝑆)
2720, 21, 22, 26mbfmcnvima 33550 . . . 4 ((𝜑𝑎𝑇) → (𝐹 “ (𝐺𝑎)) ∈ 𝑅)
2819, 27eqeltrid 2835 . . 3 ((𝜑𝑎𝑇) → ((𝐺𝐹) “ 𝑎) ∈ 𝑅)
2928ralrimiva 3144 . 2 (𝜑 → ∀𝑎𝑇 ((𝐺𝐹) “ 𝑎) ∈ 𝑅)
305, 2ismbfm 33545 . 2 (𝜑 → ((𝐺𝐹) ∈ (𝑅MblFnM𝑇) ↔ ((𝐺𝐹) ∈ ( 𝑇m 𝑅) ∧ ∀𝑎𝑇 ((𝐺𝐹) “ 𝑎) ∈ 𝑅)))
3115, 29, 30mpbir2and 709 1 (𝜑 → (𝐺𝐹) ∈ (𝑅MblFnM𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2104  wral 3059   cuni 4909  ccnv 5676  ran crn 5678  cima 5680  ccom 5681  wf 6540  (class class class)co 7413  m cmap 8824  sigAlgebracsiga 33402  MblFnMcmbfm 33543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7979  df-2nd 7980  df-map 8826  df-siga 33403  df-mbfm 33544
This theorem is referenced by:  rrvadd  33747  rrvmulc  33748
  Copyright terms: Public domain W3C validator