Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mbfmco Structured version   Visualization version   GIF version

Theorem mbfmco 31607
 Description: The composition of two measurable functions is measurable. See cnmpt11 22277. (Contributed by Thierry Arnoux, 4-Jun-2017.)
Hypotheses
Ref Expression
mbfmco.1 (𝜑𝑅 ran sigAlgebra)
mbfmco.2 (𝜑𝑆 ran sigAlgebra)
mbfmco.3 (𝜑𝑇 ran sigAlgebra)
mbfmco.4 (𝜑𝐹 ∈ (𝑅MblFnM𝑆))
mbfmco.5 (𝜑𝐺 ∈ (𝑆MblFnM𝑇))
Assertion
Ref Expression
mbfmco (𝜑 → (𝐺𝐹) ∈ (𝑅MblFnM𝑇))

Proof of Theorem mbfmco
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 mbfmco.2 . . . . 5 (𝜑𝑆 ran sigAlgebra)
2 mbfmco.3 . . . . 5 (𝜑𝑇 ran sigAlgebra)
3 mbfmco.5 . . . . 5 (𝜑𝐺 ∈ (𝑆MblFnM𝑇))
41, 2, 3mbfmf 31598 . . . 4 (𝜑𝐺: 𝑆 𝑇)
5 mbfmco.1 . . . . 5 (𝜑𝑅 ran sigAlgebra)
6 mbfmco.4 . . . . 5 (𝜑𝐹 ∈ (𝑅MblFnM𝑆))
75, 1, 6mbfmf 31598 . . . 4 (𝜑𝐹: 𝑅 𝑆)
8 fco 6523 . . . 4 ((𝐺: 𝑆 𝑇𝐹: 𝑅 𝑆) → (𝐺𝐹): 𝑅 𝑇)
94, 7, 8syl2anc 587 . . 3 (𝜑 → (𝐺𝐹): 𝑅 𝑇)
10 unielsiga 31472 . . . . 5 (𝑇 ran sigAlgebra → 𝑇𝑇)
112, 10syl 17 . . . 4 (𝜑 𝑇𝑇)
12 unielsiga 31472 . . . . 5 (𝑅 ran sigAlgebra → 𝑅𝑅)
135, 12syl 17 . . . 4 (𝜑 𝑅𝑅)
1411, 13elmapd 8418 . . 3 (𝜑 → ((𝐺𝐹) ∈ ( 𝑇m 𝑅) ↔ (𝐺𝐹): 𝑅 𝑇))
159, 14mpbird 260 . 2 (𝜑 → (𝐺𝐹) ∈ ( 𝑇m 𝑅))
16 cnvco 5744 . . . . . 6 (𝐺𝐹) = (𝐹𝐺)
1716imaeq1i 5915 . . . . 5 ((𝐺𝐹) “ 𝑎) = ((𝐹𝐺) “ 𝑎)
18 imaco 6093 . . . . 5 ((𝐹𝐺) “ 𝑎) = (𝐹 “ (𝐺𝑎))
1917, 18eqtri 2847 . . . 4 ((𝐺𝐹) “ 𝑎) = (𝐹 “ (𝐺𝑎))
205adantr 484 . . . . 5 ((𝜑𝑎𝑇) → 𝑅 ran sigAlgebra)
211adantr 484 . . . . 5 ((𝜑𝑎𝑇) → 𝑆 ran sigAlgebra)
226adantr 484 . . . . 5 ((𝜑𝑎𝑇) → 𝐹 ∈ (𝑅MblFnM𝑆))
232adantr 484 . . . . . 6 ((𝜑𝑎𝑇) → 𝑇 ran sigAlgebra)
243adantr 484 . . . . . 6 ((𝜑𝑎𝑇) → 𝐺 ∈ (𝑆MblFnM𝑇))
25 simpr 488 . . . . . 6 ((𝜑𝑎𝑇) → 𝑎𝑇)
2621, 23, 24, 25mbfmcnvima 31600 . . . . 5 ((𝜑𝑎𝑇) → (𝐺𝑎) ∈ 𝑆)
2720, 21, 22, 26mbfmcnvima 31600 . . . 4 ((𝜑𝑎𝑇) → (𝐹 “ (𝐺𝑎)) ∈ 𝑅)
2819, 27eqeltrid 2920 . . 3 ((𝜑𝑎𝑇) → ((𝐺𝐹) “ 𝑎) ∈ 𝑅)
2928ralrimiva 3177 . 2 (𝜑 → ∀𝑎𝑇 ((𝐺𝐹) “ 𝑎) ∈ 𝑅)
305, 2ismbfm 31595 . 2 (𝜑 → ((𝐺𝐹) ∈ (𝑅MblFnM𝑇) ↔ ((𝐺𝐹) ∈ ( 𝑇m 𝑅) ∧ ∀𝑎𝑇 ((𝐺𝐹) “ 𝑎) ∈ 𝑅)))
3115, 29, 30mpbir2and 712 1 (𝜑 → (𝐺𝐹) ∈ (𝑅MblFnM𝑇))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∈ wcel 2115  ∀wral 3133  ∪ cuni 4824  ◡ccnv 5542  ran crn 5544   “ cima 5546   ∘ ccom 5547  ⟶wf 6341  (class class class)co 7151   ↑m cmap 8404  sigAlgebracsiga 31452  MblFnMcmbfm 31593 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-fv 6353  df-ov 7154  df-oprab 7155  df-mpo 7156  df-1st 7686  df-2nd 7687  df-map 8406  df-siga 31453  df-mbfm 31594 This theorem is referenced by:  rrvadd  31795  rrvmulc  31796
 Copyright terms: Public domain W3C validator