Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mbfmco Structured version   Visualization version   GIF version

Theorem mbfmco 34301
Description: The composition of two measurable functions is measurable. See cnmpt11 23606. (Contributed by Thierry Arnoux, 4-Jun-2017.)
Hypotheses
Ref Expression
mbfmco.1 (𝜑𝑅 ran sigAlgebra)
mbfmco.2 (𝜑𝑆 ran sigAlgebra)
mbfmco.3 (𝜑𝑇 ran sigAlgebra)
mbfmco.4 (𝜑𝐹 ∈ (𝑅MblFnM𝑆))
mbfmco.5 (𝜑𝐺 ∈ (𝑆MblFnM𝑇))
Assertion
Ref Expression
mbfmco (𝜑 → (𝐺𝐹) ∈ (𝑅MblFnM𝑇))

Proof of Theorem mbfmco
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 mbfmco.2 . . . . 5 (𝜑𝑆 ran sigAlgebra)
2 mbfmco.3 . . . . 5 (𝜑𝑇 ran sigAlgebra)
3 mbfmco.5 . . . . 5 (𝜑𝐺 ∈ (𝑆MblFnM𝑇))
41, 2, 3mbfmf 34290 . . . 4 (𝜑𝐺: 𝑆 𝑇)
5 mbfmco.1 . . . . 5 (𝜑𝑅 ran sigAlgebra)
6 mbfmco.4 . . . . 5 (𝜑𝐹 ∈ (𝑅MblFnM𝑆))
75, 1, 6mbfmf 34290 . . . 4 (𝜑𝐹: 𝑅 𝑆)
8 fco 6735 . . . 4 ((𝐺: 𝑆 𝑇𝐹: 𝑅 𝑆) → (𝐺𝐹): 𝑅 𝑇)
94, 7, 8syl2anc 584 . . 3 (𝜑 → (𝐺𝐹): 𝑅 𝑇)
10 unielsiga 34164 . . . . 5 (𝑇 ran sigAlgebra → 𝑇𝑇)
112, 10syl 17 . . . 4 (𝜑 𝑇𝑇)
12 unielsiga 34164 . . . . 5 (𝑅 ran sigAlgebra → 𝑅𝑅)
135, 12syl 17 . . . 4 (𝜑 𝑅𝑅)
1411, 13elmapd 8859 . . 3 (𝜑 → ((𝐺𝐹) ∈ ( 𝑇m 𝑅) ↔ (𝐺𝐹): 𝑅 𝑇))
159, 14mpbird 257 . 2 (𝜑 → (𝐺𝐹) ∈ ( 𝑇m 𝑅))
16 cnvco 5870 . . . . . 6 (𝐺𝐹) = (𝐹𝐺)
1716imaeq1i 6049 . . . . 5 ((𝐺𝐹) “ 𝑎) = ((𝐹𝐺) “ 𝑎)
18 imaco 6245 . . . . 5 ((𝐹𝐺) “ 𝑎) = (𝐹 “ (𝐺𝑎))
1917, 18eqtri 2759 . . . 4 ((𝐺𝐹) “ 𝑎) = (𝐹 “ (𝐺𝑎))
205adantr 480 . . . . 5 ((𝜑𝑎𝑇) → 𝑅 ran sigAlgebra)
211adantr 480 . . . . 5 ((𝜑𝑎𝑇) → 𝑆 ran sigAlgebra)
226adantr 480 . . . . 5 ((𝜑𝑎𝑇) → 𝐹 ∈ (𝑅MblFnM𝑆))
232adantr 480 . . . . . 6 ((𝜑𝑎𝑇) → 𝑇 ran sigAlgebra)
243adantr 480 . . . . . 6 ((𝜑𝑎𝑇) → 𝐺 ∈ (𝑆MblFnM𝑇))
25 simpr 484 . . . . . 6 ((𝜑𝑎𝑇) → 𝑎𝑇)
2621, 23, 24, 25mbfmcnvima 34292 . . . . 5 ((𝜑𝑎𝑇) → (𝐺𝑎) ∈ 𝑆)
2720, 21, 22, 26mbfmcnvima 34292 . . . 4 ((𝜑𝑎𝑇) → (𝐹 “ (𝐺𝑎)) ∈ 𝑅)
2819, 27eqeltrid 2839 . . 3 ((𝜑𝑎𝑇) → ((𝐺𝐹) “ 𝑎) ∈ 𝑅)
2928ralrimiva 3133 . 2 (𝜑 → ∀𝑎𝑇 ((𝐺𝐹) “ 𝑎) ∈ 𝑅)
305, 2ismbfm 34287 . 2 (𝜑 → ((𝐺𝐹) ∈ (𝑅MblFnM𝑇) ↔ ((𝐺𝐹) ∈ ( 𝑇m 𝑅) ∧ ∀𝑎𝑇 ((𝐺𝐹) “ 𝑎) ∈ 𝑅)))
3115, 29, 30mpbir2and 713 1 (𝜑 → (𝐺𝐹) ∈ (𝑅MblFnM𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3052   cuni 4888  ccnv 5658  ran crn 5660  cima 5662  ccom 5663  wf 6532  (class class class)co 7410  m cmap 8845  sigAlgebracsiga 34144  MblFnMcmbfm 34285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-map 8847  df-siga 34145  df-mbfm 34286
This theorem is referenced by:  rrvadd  34489  rrvmulc  34490
  Copyright terms: Public domain W3C validator