MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkiswwlks2lem5 Structured version   Visualization version   GIF version

Theorem wlkiswwlks2lem5 28139
Description: Lemma 5 for wlkiswwlks2 28141. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 10-Apr-2021.)
Hypotheses
Ref Expression
wlkiswwlks2lem.f 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))
wlkiswwlks2lem.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
wlkiswwlks2lem5 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸𝐹 ∈ Word dom 𝐸))
Distinct variable groups:   𝑥,𝑃   𝑥,𝐸   𝑥,𝑉   𝑖,𝐹   𝑖,𝐺   𝑃,𝑖   𝑖,𝑉,𝑥   𝑖,𝐸   𝑥,𝐺
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem wlkiswwlks2lem5
StepHypRef Expression
1 wlkiswwlks2lem.e . . . . . . . . 9 𝐸 = (iEdg‘𝐺)
21uspgrf1oedg 27446 . . . . . . . 8 (𝐺 ∈ USPGraph → 𝐸:dom 𝐸1-1-onto→(Edg‘𝐺))
31rneqi 5835 . . . . . . . . . . 11 ran 𝐸 = ran (iEdg‘𝐺)
4 edgval 27322 . . . . . . . . . . 11 (Edg‘𝐺) = ran (iEdg‘𝐺)
53, 4eqtr4i 2769 . . . . . . . . . 10 ran 𝐸 = (Edg‘𝐺)
65a1i 11 . . . . . . . . 9 (𝐺 ∈ USPGraph → ran 𝐸 = (Edg‘𝐺))
76f1oeq3d 6697 . . . . . . . 8 (𝐺 ∈ USPGraph → (𝐸:dom 𝐸1-1-onto→ran 𝐸𝐸:dom 𝐸1-1-onto→(Edg‘𝐺)))
82, 7mpbird 256 . . . . . . 7 (𝐺 ∈ USPGraph → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
983ad2ant1 1131 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
109ad2antrr 722 . . . . 5 ((((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1))) → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
11 simpr 484 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1))) → 𝑥 ∈ (0..^((♯‘𝑃) − 1)))
12 fveq2 6756 . . . . . . . . . . 11 (𝑖 = 𝑥 → (𝑃𝑖) = (𝑃𝑥))
13 fvoveq1 7278 . . . . . . . . . . 11 (𝑖 = 𝑥 → (𝑃‘(𝑖 + 1)) = (𝑃‘(𝑥 + 1)))
1412, 13preq12d 4674 . . . . . . . . . 10 (𝑖 = 𝑥 → {(𝑃𝑖), (𝑃‘(𝑖 + 1))} = {(𝑃𝑥), (𝑃‘(𝑥 + 1))})
1514eleq1d 2823 . . . . . . . . 9 (𝑖 = 𝑥 → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸))
1615adantl 481 . . . . . . . 8 ((((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1))) ∧ 𝑖 = 𝑥) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸))
1711, 16rspcdv 3543 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1))) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸))
1817impancom 451 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → (𝑥 ∈ (0..^((♯‘𝑃) − 1)) → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸))
1918imp 406 . . . . 5 ((((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1))) → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸)
20 f1ocnvdm 7137 . . . . 5 ((𝐸:dom 𝐸1-1-onto→ran 𝐸 ∧ {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸) → (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}) ∈ dom 𝐸)
2110, 19, 20syl2anc 583 . . . 4 ((((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1))) → (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}) ∈ dom 𝐸)
22 wlkiswwlks2lem.f . . . 4 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))
2321, 22fmptd 6970 . . 3 (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → 𝐹:(0..^((♯‘𝑃) − 1))⟶dom 𝐸)
24 iswrdi 14149 . . 3 (𝐹:(0..^((♯‘𝑃) − 1))⟶dom 𝐸𝐹 ∈ Word dom 𝐸)
2523, 24syl 17 . 2 (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → 𝐹 ∈ Word dom 𝐸)
2625ex 412 1 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸𝐹 ∈ Word dom 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  {cpr 4560   class class class wbr 5070  cmpt 5153  ccnv 5579  dom cdm 5580  ran crn 5581  wf 6414  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805  cle 10941  cmin 11135  ..^cfzo 13311  chash 13972  Word cword 14145  iEdgciedg 27270  Edgcedg 27320  USPGraphcuspgr 27421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-word 14146  df-edg 27321  df-uspgr 27423
This theorem is referenced by:  wlkiswwlks2lem6  28140
  Copyright terms: Public domain W3C validator