MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkiswwlks2lem5 Structured version   Visualization version   GIF version

Theorem wlkiswwlks2lem5 29860
Description: Lemma 5 for wlkiswwlks2 29862. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 10-Apr-2021.)
Hypotheses
Ref Expression
wlkiswwlks2lem.f 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))
wlkiswwlks2lem.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
wlkiswwlks2lem5 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸𝐹 ∈ Word dom 𝐸))
Distinct variable groups:   𝑥,𝑃   𝑥,𝐸   𝑥,𝑉   𝑖,𝐹   𝑖,𝐺   𝑃,𝑖   𝑖,𝑉,𝑥   𝑖,𝐸   𝑥,𝐺
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem wlkiswwlks2lem5
StepHypRef Expression
1 wlkiswwlks2lem.e . . . . . . . . 9 𝐸 = (iEdg‘𝐺)
21uspgrf1oedg 29157 . . . . . . . 8 (𝐺 ∈ USPGraph → 𝐸:dom 𝐸1-1-onto→(Edg‘𝐺))
31rneqi 5922 . . . . . . . . . . 11 ran 𝐸 = ran (iEdg‘𝐺)
4 edgval 29033 . . . . . . . . . . 11 (Edg‘𝐺) = ran (iEdg‘𝐺)
53, 4eqtr4i 2762 . . . . . . . . . 10 ran 𝐸 = (Edg‘𝐺)
65a1i 11 . . . . . . . . 9 (𝐺 ∈ USPGraph → ran 𝐸 = (Edg‘𝐺))
76f1oeq3d 6820 . . . . . . . 8 (𝐺 ∈ USPGraph → (𝐸:dom 𝐸1-1-onto→ran 𝐸𝐸:dom 𝐸1-1-onto→(Edg‘𝐺)))
82, 7mpbird 257 . . . . . . 7 (𝐺 ∈ USPGraph → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
983ad2ant1 1133 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
109ad2antrr 726 . . . . 5 ((((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1))) → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
11 simpr 484 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1))) → 𝑥 ∈ (0..^((♯‘𝑃) − 1)))
12 fveq2 6881 . . . . . . . . . . 11 (𝑖 = 𝑥 → (𝑃𝑖) = (𝑃𝑥))
13 fvoveq1 7433 . . . . . . . . . . 11 (𝑖 = 𝑥 → (𝑃‘(𝑖 + 1)) = (𝑃‘(𝑥 + 1)))
1412, 13preq12d 4722 . . . . . . . . . 10 (𝑖 = 𝑥 → {(𝑃𝑖), (𝑃‘(𝑖 + 1))} = {(𝑃𝑥), (𝑃‘(𝑥 + 1))})
1514eleq1d 2820 . . . . . . . . 9 (𝑖 = 𝑥 → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸))
1615adantl 481 . . . . . . . 8 ((((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1))) ∧ 𝑖 = 𝑥) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸))
1711, 16rspcdv 3598 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1))) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸))
1817impancom 451 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → (𝑥 ∈ (0..^((♯‘𝑃) − 1)) → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸))
1918imp 406 . . . . 5 ((((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1))) → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸)
20 f1ocnvdm 7283 . . . . 5 ((𝐸:dom 𝐸1-1-onto→ran 𝐸 ∧ {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸) → (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}) ∈ dom 𝐸)
2110, 19, 20syl2anc 584 . . . 4 ((((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1))) → (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}) ∈ dom 𝐸)
22 wlkiswwlks2lem.f . . . 4 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))
2321, 22fmptd 7109 . . 3 (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → 𝐹:(0..^((♯‘𝑃) − 1))⟶dom 𝐸)
24 iswrdi 14540 . . 3 (𝐹:(0..^((♯‘𝑃) − 1))⟶dom 𝐸𝐹 ∈ Word dom 𝐸)
2523, 24syl 17 . 2 (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → 𝐹 ∈ Word dom 𝐸)
2625ex 412 1 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸𝐹 ∈ Word dom 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  {cpr 4608   class class class wbr 5124  cmpt 5206  ccnv 5658  dom cdm 5659  ran crn 5660  wf 6532  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  0cc0 11134  1c1 11135   + caddc 11137  cle 11275  cmin 11471  ..^cfzo 13676  chash 14353  Word cword 14536  iEdgciedg 28981  Edgcedg 29031  USPGraphcuspgr 29132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-word 14537  df-edg 29032  df-uspgr 29134
This theorem is referenced by:  wlkiswwlks2lem6  29861
  Copyright terms: Public domain W3C validator