MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkiswwlks2lem5 Structured version   Visualization version   GIF version

Theorem wlkiswwlks2lem5 27654
Description: Lemma 5 for wlkiswwlks2 27656. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 10-Apr-2021.)
Hypotheses
Ref Expression
wlkiswwlks2lem.f 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))
wlkiswwlks2lem.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
wlkiswwlks2lem5 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸𝐹 ∈ Word dom 𝐸))
Distinct variable groups:   𝑥,𝑃   𝑥,𝐸   𝑥,𝑉   𝑖,𝐹   𝑖,𝐺   𝑃,𝑖   𝑖,𝑉,𝑥   𝑖,𝐸   𝑥,𝐺
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem wlkiswwlks2lem5
StepHypRef Expression
1 wlkiswwlks2lem.e . . . . . . . . 9 𝐸 = (iEdg‘𝐺)
21uspgrf1oedg 26961 . . . . . . . 8 (𝐺 ∈ USPGraph → 𝐸:dom 𝐸1-1-onto→(Edg‘𝐺))
31rneqi 5810 . . . . . . . . . . 11 ran 𝐸 = ran (iEdg‘𝐺)
4 edgval 26837 . . . . . . . . . . 11 (Edg‘𝐺) = ran (iEdg‘𝐺)
53, 4eqtr4i 2850 . . . . . . . . . 10 ran 𝐸 = (Edg‘𝐺)
65a1i 11 . . . . . . . . 9 (𝐺 ∈ USPGraph → ran 𝐸 = (Edg‘𝐺))
76f1oeq3d 6615 . . . . . . . 8 (𝐺 ∈ USPGraph → (𝐸:dom 𝐸1-1-onto→ran 𝐸𝐸:dom 𝐸1-1-onto→(Edg‘𝐺)))
82, 7mpbird 259 . . . . . . 7 (𝐺 ∈ USPGraph → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
983ad2ant1 1129 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
109ad2antrr 724 . . . . 5 ((((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1))) → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
11 simpr 487 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1))) → 𝑥 ∈ (0..^((♯‘𝑃) − 1)))
12 fveq2 6673 . . . . . . . . . . 11 (𝑖 = 𝑥 → (𝑃𝑖) = (𝑃𝑥))
13 fvoveq1 7182 . . . . . . . . . . 11 (𝑖 = 𝑥 → (𝑃‘(𝑖 + 1)) = (𝑃‘(𝑥 + 1)))
1412, 13preq12d 4680 . . . . . . . . . 10 (𝑖 = 𝑥 → {(𝑃𝑖), (𝑃‘(𝑖 + 1))} = {(𝑃𝑥), (𝑃‘(𝑥 + 1))})
1514eleq1d 2900 . . . . . . . . 9 (𝑖 = 𝑥 → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸))
1615adantl 484 . . . . . . . 8 ((((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1))) ∧ 𝑖 = 𝑥) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸))
1711, 16rspcdv 3618 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1))) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸))
1817impancom 454 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → (𝑥 ∈ (0..^((♯‘𝑃) − 1)) → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸))
1918imp 409 . . . . 5 ((((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1))) → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸)
20 f1ocnvdm 7044 . . . . 5 ((𝐸:dom 𝐸1-1-onto→ran 𝐸 ∧ {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸) → (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}) ∈ dom 𝐸)
2110, 19, 20syl2anc 586 . . . 4 ((((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1))) → (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}) ∈ dom 𝐸)
22 wlkiswwlks2lem.f . . . 4 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))
2321, 22fmptd 6881 . . 3 (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → 𝐹:(0..^((♯‘𝑃) − 1))⟶dom 𝐸)
24 iswrdi 13868 . . 3 (𝐹:(0..^((♯‘𝑃) − 1))⟶dom 𝐸𝐹 ∈ Word dom 𝐸)
2523, 24syl 17 . 2 (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → 𝐹 ∈ Word dom 𝐸)
2625ex 415 1 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸𝐹 ∈ Word dom 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  {cpr 4572   class class class wbr 5069  cmpt 5149  ccnv 5557  dom cdm 5558  ran crn 5559  wf 6354  1-1-ontowf1o 6357  cfv 6358  (class class class)co 7159  0cc0 10540  1c1 10541   + caddc 10543  cle 10679  cmin 10873  ..^cfzo 13036  chash 13693  Word cword 13864  iEdgciedg 26785  Edgcedg 26835  USPGraphcuspgr 26936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-word 13865  df-edg 26836  df-uspgr 26938
This theorem is referenced by:  wlkiswwlks2lem6  27655
  Copyright terms: Public domain W3C validator