| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wlkiswwlks2lem5 | Structured version Visualization version GIF version | ||
| Description: Lemma 5 for wlkiswwlks2 29874. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 10-Apr-2021.) |
| Ref | Expression |
|---|---|
| wlkiswwlks2lem.f | ⊢ 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))})) |
| wlkiswwlks2lem.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| wlkiswwlks2lem5 | ⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → 𝐹 ∈ Word dom 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkiswwlks2lem.e | . . . . . . . . 9 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 2 | 1 | uspgrf1oedg 29172 | . . . . . . . 8 ⊢ (𝐺 ∈ USPGraph → 𝐸:dom 𝐸–1-1-onto→(Edg‘𝐺)) |
| 3 | 1 | rneqi 5883 | . . . . . . . . . . 11 ⊢ ran 𝐸 = ran (iEdg‘𝐺) |
| 4 | edgval 29048 | . . . . . . . . . . 11 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 5 | 3, 4 | eqtr4i 2759 | . . . . . . . . . 10 ⊢ ran 𝐸 = (Edg‘𝐺) |
| 6 | 5 | a1i 11 | . . . . . . . . 9 ⊢ (𝐺 ∈ USPGraph → ran 𝐸 = (Edg‘𝐺)) |
| 7 | 6 | f1oeq3d 6768 | . . . . . . . 8 ⊢ (𝐺 ∈ USPGraph → (𝐸:dom 𝐸–1-1-onto→ran 𝐸 ↔ 𝐸:dom 𝐸–1-1-onto→(Edg‘𝐺))) |
| 8 | 2, 7 | mpbird 257 | . . . . . . 7 ⊢ (𝐺 ∈ USPGraph → 𝐸:dom 𝐸–1-1-onto→ran 𝐸) |
| 9 | 8 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 𝐸:dom 𝐸–1-1-onto→ran 𝐸) |
| 10 | 9 | ad2antrr 726 | . . . . 5 ⊢ ((((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1))) → 𝐸:dom 𝐸–1-1-onto→ran 𝐸) |
| 11 | simpr 484 | . . . . . . . 8 ⊢ (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1))) → 𝑥 ∈ (0..^((♯‘𝑃) − 1))) | |
| 12 | fveq2 6831 | . . . . . . . . . . 11 ⊢ (𝑖 = 𝑥 → (𝑃‘𝑖) = (𝑃‘𝑥)) | |
| 13 | fvoveq1 7378 | . . . . . . . . . . 11 ⊢ (𝑖 = 𝑥 → (𝑃‘(𝑖 + 1)) = (𝑃‘(𝑥 + 1))) | |
| 14 | 12, 13 | preq12d 4695 | . . . . . . . . . 10 ⊢ (𝑖 = 𝑥 → {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}) |
| 15 | 14 | eleq1d 2818 | . . . . . . . . 9 ⊢ (𝑖 = 𝑥 → ({(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸)) |
| 16 | 15 | adantl 481 | . . . . . . . 8 ⊢ ((((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1))) ∧ 𝑖 = 𝑥) → ({(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸)) |
| 17 | 11, 16 | rspcdv 3565 | . . . . . . 7 ⊢ (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1))) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸)) |
| 18 | 17 | impancom 451 | . . . . . 6 ⊢ (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → (𝑥 ∈ (0..^((♯‘𝑃) − 1)) → {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸)) |
| 19 | 18 | imp 406 | . . . . 5 ⊢ ((((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1))) → {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸) |
| 20 | f1ocnvdm 7228 | . . . . 5 ⊢ ((𝐸:dom 𝐸–1-1-onto→ran 𝐸 ∧ {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸) → (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}) ∈ dom 𝐸) | |
| 21 | 10, 19, 20 | syl2anc 584 | . . . 4 ⊢ ((((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1))) → (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}) ∈ dom 𝐸) |
| 22 | wlkiswwlks2lem.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))})) | |
| 23 | 21, 22 | fmptd 7056 | . . 3 ⊢ (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → 𝐹:(0..^((♯‘𝑃) − 1))⟶dom 𝐸) |
| 24 | iswrdi 14431 | . . 3 ⊢ (𝐹:(0..^((♯‘𝑃) − 1))⟶dom 𝐸 → 𝐹 ∈ Word dom 𝐸) | |
| 25 | 23, 24 | syl 17 | . 2 ⊢ (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → 𝐹 ∈ Word dom 𝐸) |
| 26 | 25 | ex 412 | 1 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → 𝐹 ∈ Word dom 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 {cpr 4579 class class class wbr 5095 ↦ cmpt 5176 ◡ccnv 5620 dom cdm 5621 ran crn 5622 ⟶wf 6485 –1-1-onto→wf1o 6488 ‘cfv 6489 (class class class)co 7355 0cc0 11017 1c1 11018 + caddc 11020 ≤ cle 11158 − cmin 11355 ..^cfzo 13561 ♯chash 14244 Word cword 14427 iEdgciedg 28996 Edgcedg 29046 USPGraphcuspgr 29147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-n0 12393 df-z 12480 df-uz 12743 df-fz 13415 df-fzo 13562 df-word 14428 df-edg 29047 df-uspgr 29149 |
| This theorem is referenced by: wlkiswwlks2lem6 29873 |
| Copyright terms: Public domain | W3C validator |