Step | Hyp | Ref
| Expression |
1 | | wlkiswwlks2lem.e |
. . . . . . . . 9
β’ πΈ = (iEdgβπΊ) |
2 | 1 | uspgrf1oedg 28700 |
. . . . . . . 8
β’ (πΊ β USPGraph β πΈ:dom πΈβ1-1-ontoβ(EdgβπΊ)) |
3 | 1 | rneqi 5935 |
. . . . . . . . . . 11
β’ ran πΈ = ran (iEdgβπΊ) |
4 | | edgval 28576 |
. . . . . . . . . . 11
β’
(EdgβπΊ) = ran
(iEdgβπΊ) |
5 | 3, 4 | eqtr4i 2761 |
. . . . . . . . . 10
β’ ran πΈ = (EdgβπΊ) |
6 | 5 | a1i 11 |
. . . . . . . . 9
β’ (πΊ β USPGraph β ran
πΈ = (EdgβπΊ)) |
7 | 6 | f1oeq3d 6829 |
. . . . . . . 8
β’ (πΊ β USPGraph β (πΈ:dom πΈβ1-1-ontoβran
πΈ β πΈ:dom πΈβ1-1-ontoβ(EdgβπΊ))) |
8 | 2, 7 | mpbird 256 |
. . . . . . 7
β’ (πΊ β USPGraph β πΈ:dom πΈβ1-1-ontoβran
πΈ) |
9 | 8 | 3ad2ant1 1131 |
. . . . . 6
β’ ((πΊ β USPGraph β§ π β Word π β§ 1 β€ (β―βπ)) β πΈ:dom πΈβ1-1-ontoβran
πΈ) |
10 | 9 | ad2antrr 722 |
. . . . 5
β’ ((((πΊ β USPGraph β§ π β Word π β§ 1 β€ (β―βπ)) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β ran πΈ) β§ π₯ β (0..^((β―βπ) β 1))) β πΈ:dom πΈβ1-1-ontoβran
πΈ) |
11 | | simpr 483 |
. . . . . . . 8
β’ (((πΊ β USPGraph β§ π β Word π β§ 1 β€ (β―βπ)) β§ π₯ β (0..^((β―βπ) β 1))) β π₯ β
(0..^((β―βπ)
β 1))) |
12 | | fveq2 6890 |
. . . . . . . . . . 11
β’ (π = π₯ β (πβπ) = (πβπ₯)) |
13 | | fvoveq1 7434 |
. . . . . . . . . . 11
β’ (π = π₯ β (πβ(π + 1)) = (πβ(π₯ + 1))) |
14 | 12, 13 | preq12d 4744 |
. . . . . . . . . 10
β’ (π = π₯ β {(πβπ), (πβ(π + 1))} = {(πβπ₯), (πβ(π₯ + 1))}) |
15 | 14 | eleq1d 2816 |
. . . . . . . . 9
β’ (π = π₯ β ({(πβπ), (πβ(π + 1))} β ran πΈ β {(πβπ₯), (πβ(π₯ + 1))} β ran πΈ)) |
16 | 15 | adantl 480 |
. . . . . . . 8
β’ ((((πΊ β USPGraph β§ π β Word π β§ 1 β€ (β―βπ)) β§ π₯ β (0..^((β―βπ) β 1))) β§ π = π₯) β ({(πβπ), (πβ(π + 1))} β ran πΈ β {(πβπ₯), (πβ(π₯ + 1))} β ran πΈ)) |
17 | 11, 16 | rspcdv 3603 |
. . . . . . 7
β’ (((πΊ β USPGraph β§ π β Word π β§ 1 β€ (β―βπ)) β§ π₯ β (0..^((β―βπ) β 1))) β
(βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β ran πΈ β {(πβπ₯), (πβ(π₯ + 1))} β ran πΈ)) |
18 | 17 | impancom 450 |
. . . . . 6
β’ (((πΊ β USPGraph β§ π β Word π β§ 1 β€ (β―βπ)) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β ran πΈ) β (π₯ β (0..^((β―βπ) β 1)) β {(πβπ₯), (πβ(π₯ + 1))} β ran πΈ)) |
19 | 18 | imp 405 |
. . . . 5
β’ ((((πΊ β USPGraph β§ π β Word π β§ 1 β€ (β―βπ)) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β ran πΈ) β§ π₯ β (0..^((β―βπ) β 1))) β {(πβπ₯), (πβ(π₯ + 1))} β ran πΈ) |
20 | | f1ocnvdm 7285 |
. . . . 5
β’ ((πΈ:dom πΈβ1-1-ontoβran
πΈ β§ {(πβπ₯), (πβ(π₯ + 1))} β ran πΈ) β (β‘πΈβ{(πβπ₯), (πβ(π₯ + 1))}) β dom πΈ) |
21 | 10, 19, 20 | syl2anc 582 |
. . . 4
β’ ((((πΊ β USPGraph β§ π β Word π β§ 1 β€ (β―βπ)) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β ran πΈ) β§ π₯ β (0..^((β―βπ) β 1))) β (β‘πΈβ{(πβπ₯), (πβ(π₯ + 1))}) β dom πΈ) |
22 | | wlkiswwlks2lem.f |
. . . 4
β’ πΉ = (π₯ β (0..^((β―βπ) β 1)) β¦ (β‘πΈβ{(πβπ₯), (πβ(π₯ + 1))})) |
23 | 21, 22 | fmptd 7114 |
. . 3
β’ (((πΊ β USPGraph β§ π β Word π β§ 1 β€ (β―βπ)) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β ran πΈ) β πΉ:(0..^((β―βπ) β 1))βΆdom πΈ) |
24 | | iswrdi 14472 |
. . 3
β’ (πΉ:(0..^((β―βπ) β 1))βΆdom πΈ β πΉ β Word dom πΈ) |
25 | 23, 24 | syl 17 |
. 2
β’ (((πΊ β USPGraph β§ π β Word π β§ 1 β€ (β―βπ)) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β ran πΈ) β πΉ β Word dom πΈ) |
26 | 25 | ex 411 |
1
β’ ((πΊ β USPGraph β§ π β Word π β§ 1 β€ (β―βπ)) β (βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β ran πΈ β πΉ β Word dom πΈ)) |