MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustssel Structured version   Visualization version   GIF version

Theorem ustssel 24235
Description: A uniform structure is upward closed. Condition FI of [BourbakiTop1] p. I.36. (Contributed by Thierry Arnoux, 19-Nov-2017.) (Proof shortened by AV, 17-Sep-2021.)
Assertion
Ref Expression
ustssel ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → (𝑉𝑊𝑊𝑈))

Proof of Theorem ustssel
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → 𝑈 ∈ (UnifOn‘𝑋))
21elfvexd 6959 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → 𝑋 ∈ V)
3 isust 24233 . . . . . 6 (𝑋 ∈ V → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))))
42, 3syl 17 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))))
51, 4mpbid 232 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣))))
65simp3d 1144 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))
7 simp1 1136 . . . 4 ((∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)) → ∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈))
87ralimi 3089 . . 3 (∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)) → ∀𝑣𝑈𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈))
96, 8syl 17 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → ∀𝑣𝑈𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈))
10 simp2 1137 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → 𝑉𝑈)
112, 2xpexd 7786 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → (𝑋 × 𝑋) ∈ V)
12 simp3 1138 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → 𝑊 ⊆ (𝑋 × 𝑋))
1311, 12sselpwd 5346 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → 𝑊 ∈ 𝒫 (𝑋 × 𝑋))
14 sseq1 4034 . . . . 5 (𝑣 = 𝑉 → (𝑣𝑤𝑉𝑤))
1514imbi1d 341 . . . 4 (𝑣 = 𝑉 → ((𝑣𝑤𝑤𝑈) ↔ (𝑉𝑤𝑤𝑈)))
16 sseq2 4035 . . . . 5 (𝑤 = 𝑊 → (𝑉𝑤𝑉𝑊))
17 eleq1 2832 . . . . 5 (𝑤 = 𝑊 → (𝑤𝑈𝑊𝑈))
1816, 17imbi12d 344 . . . 4 (𝑤 = 𝑊 → ((𝑉𝑤𝑤𝑈) ↔ (𝑉𝑊𝑊𝑈)))
1915, 18rspc2v 3646 . . 3 ((𝑉𝑈𝑊 ∈ 𝒫 (𝑋 × 𝑋)) → (∀𝑣𝑈𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) → (𝑉𝑊𝑊𝑈)))
2010, 13, 19syl2anc 583 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → (∀𝑣𝑈𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) → (𝑉𝑊𝑊𝑈)))
219, 20mpd 15 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → (𝑉𝑊𝑊𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  cin 3975  wss 3976  𝒫 cpw 4622   I cid 5592   × cxp 5698  ccnv 5699  cres 5702  ccom 5704  cfv 6573  UnifOncust 24229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-res 5712  df-iota 6525  df-fun 6575  df-fv 6581  df-ust 24230
This theorem is referenced by:  trust  24259  ustuqtop1  24271  ucnprima  24312
  Copyright terms: Public domain W3C validator