MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustssel Structured version   Visualization version   GIF version

Theorem ustssel 23265
Description: A uniform structure is upward closed. Condition FI of [BourbakiTop1] p. I.36. (Contributed by Thierry Arnoux, 19-Nov-2017.) (Proof shortened by AV, 17-Sep-2021.)
Assertion
Ref Expression
ustssel ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → (𝑉𝑊𝑊𝑈))

Proof of Theorem ustssel
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1134 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → 𝑈 ∈ (UnifOn‘𝑋))
21elfvexd 6790 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → 𝑋 ∈ V)
3 isust 23263 . . . . . 6 (𝑋 ∈ V → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))))
42, 3syl 17 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))))
51, 4mpbid 231 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣))))
65simp3d 1142 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))
7 simp1 1134 . . . 4 ((∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)) → ∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈))
87ralimi 3086 . . 3 (∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)) → ∀𝑣𝑈𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈))
96, 8syl 17 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → ∀𝑣𝑈𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈))
10 simp2 1135 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → 𝑉𝑈)
112, 2xpexd 7579 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → (𝑋 × 𝑋) ∈ V)
12 simp3 1136 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → 𝑊 ⊆ (𝑋 × 𝑋))
1311, 12sselpwd 5245 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → 𝑊 ∈ 𝒫 (𝑋 × 𝑋))
14 sseq1 3942 . . . . 5 (𝑣 = 𝑉 → (𝑣𝑤𝑉𝑤))
1514imbi1d 341 . . . 4 (𝑣 = 𝑉 → ((𝑣𝑤𝑤𝑈) ↔ (𝑉𝑤𝑤𝑈)))
16 sseq2 3943 . . . . 5 (𝑤 = 𝑊 → (𝑉𝑤𝑉𝑊))
17 eleq1 2826 . . . . 5 (𝑤 = 𝑊 → (𝑤𝑈𝑊𝑈))
1816, 17imbi12d 344 . . . 4 (𝑤 = 𝑊 → ((𝑉𝑤𝑤𝑈) ↔ (𝑉𝑊𝑊𝑈)))
1915, 18rspc2v 3562 . . 3 ((𝑉𝑈𝑊 ∈ 𝒫 (𝑋 × 𝑋)) → (∀𝑣𝑈𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) → (𝑉𝑊𝑊𝑈)))
2010, 13, 19syl2anc 583 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → (∀𝑣𝑈𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) → (𝑉𝑊𝑊𝑈)))
219, 20mpd 15 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → (𝑉𝑊𝑊𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  cin 3882  wss 3883  𝒫 cpw 4530   I cid 5479   × cxp 5578  ccnv 5579  cres 5582  ccom 5584  cfv 6418  UnifOncust 23259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-res 5592  df-iota 6376  df-fun 6420  df-fv 6426  df-ust 23260
This theorem is referenced by:  trust  23289  ustuqtop1  23301  ucnprima  23342
  Copyright terms: Public domain W3C validator