MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ucnprima Structured version   Visualization version   GIF version

Theorem ucnprima 23434
Description: The preimage by a uniformly continuous function 𝐹 of an entourage 𝑊 of 𝑌 is an entourage of 𝑋. Note of the definition 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 19-Nov-2017.)
Hypotheses
Ref Expression
ucnprima.1 (𝜑𝑈 ∈ (UnifOn‘𝑋))
ucnprima.2 (𝜑𝑉 ∈ (UnifOn‘𝑌))
ucnprima.3 (𝜑𝐹 ∈ (𝑈 Cnu𝑉))
ucnprima.4 (𝜑𝑊𝑉)
ucnprima.5 𝐺 = (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
Assertion
Ref Expression
ucnprima (𝜑 → (𝐺𝑊) ∈ 𝑈)
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝑋,𝑦   𝑥,𝐺,𝑦   𝑥,𝑈,𝑦   𝑥,𝑉   𝑥,𝑊,𝑦   𝑥,𝑌   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑦)   𝑌(𝑦)

Proof of Theorem ucnprima
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 ucnprima.1 . . . 4 (𝜑𝑈 ∈ (UnifOn‘𝑋))
2 ucnprima.2 . . . 4 (𝜑𝑉 ∈ (UnifOn‘𝑌))
3 ucnprima.3 . . . 4 (𝜑𝐹 ∈ (𝑈 Cnu𝑉))
4 ucnprima.4 . . . 4 (𝜑𝑊𝑉)
5 ucnprima.5 . . . 4 𝐺 = (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
61, 2, 3, 4, 5ucnima 23433 . . 3 (𝜑 → ∃𝑟𝑈 (𝐺𝑟) ⊆ 𝑊)
75mpofun 7398 . . . . 5 Fun 𝐺
8 ustssxp 23356 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑟𝑈) → 𝑟 ⊆ (𝑋 × 𝑋))
91, 8sylan 580 . . . . . 6 ((𝜑𝑟𝑈) → 𝑟 ⊆ (𝑋 × 𝑋))
10 opex 5379 . . . . . . 7 ⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ V
115, 10dmmpo 7911 . . . . . 6 dom 𝐺 = (𝑋 × 𝑋)
129, 11sseqtrrdi 3972 . . . . 5 ((𝜑𝑟𝑈) → 𝑟 ⊆ dom 𝐺)
13 funimass3 6931 . . . . 5 ((Fun 𝐺𝑟 ⊆ dom 𝐺) → ((𝐺𝑟) ⊆ 𝑊𝑟 ⊆ (𝐺𝑊)))
147, 12, 13sylancr 587 . . . 4 ((𝜑𝑟𝑈) → ((𝐺𝑟) ⊆ 𝑊𝑟 ⊆ (𝐺𝑊)))
1514rexbidva 3225 . . 3 (𝜑 → (∃𝑟𝑈 (𝐺𝑟) ⊆ 𝑊 ↔ ∃𝑟𝑈 𝑟 ⊆ (𝐺𝑊)))
166, 15mpbid 231 . 2 (𝜑 → ∃𝑟𝑈 𝑟 ⊆ (𝐺𝑊))
171adantr 481 . . . 4 ((𝜑𝑟𝑈) → 𝑈 ∈ (UnifOn‘𝑋))
18 simpr 485 . . . 4 ((𝜑𝑟𝑈) → 𝑟𝑈)
19 cnvimass 5989 . . . . . 6 (𝐺𝑊) ⊆ dom 𝐺
2019, 11sseqtri 3957 . . . . 5 (𝐺𝑊) ⊆ (𝑋 × 𝑋)
2120a1i 11 . . . 4 ((𝜑𝑟𝑈) → (𝐺𝑊) ⊆ (𝑋 × 𝑋))
22 ustssel 23357 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑟𝑈 ∧ (𝐺𝑊) ⊆ (𝑋 × 𝑋)) → (𝑟 ⊆ (𝐺𝑊) → (𝐺𝑊) ∈ 𝑈))
2317, 18, 21, 22syl3anc 1370 . . 3 ((𝜑𝑟𝑈) → (𝑟 ⊆ (𝐺𝑊) → (𝐺𝑊) ∈ 𝑈))
2423rexlimdva 3213 . 2 (𝜑 → (∃𝑟𝑈 𝑟 ⊆ (𝐺𝑊) → (𝐺𝑊) ∈ 𝑈))
2516, 24mpd 15 1 (𝜑 → (𝐺𝑊) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065  wss 3887  cop 4567   × cxp 5587  ccnv 5588  dom cdm 5589  cima 5592  Fun wfun 6427  cfv 6433  (class class class)co 7275  cmpo 7277  UnifOncust 23351   Cnucucn 23427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617  df-ust 23352  df-ucn 23428
This theorem is referenced by:  fmucnd  23444
  Copyright terms: Public domain W3C validator