![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ucnprima | Structured version Visualization version GIF version |
Description: The preimage by a uniformly continuous function 𝐹 of an entourage 𝑊 of 𝑌 is an entourage of 𝑋. Note of the definition 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 19-Nov-2017.) |
Ref | Expression |
---|---|
ucnprima.1 | ⊢ (𝜑 → 𝑈 ∈ (UnifOn‘𝑋)) |
ucnprima.2 | ⊢ (𝜑 → 𝑉 ∈ (UnifOn‘𝑌)) |
ucnprima.3 | ⊢ (𝜑 → 𝐹 ∈ (𝑈 Cnu𝑉)) |
ucnprima.4 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
ucnprima.5 | ⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) |
Ref | Expression |
---|---|
ucnprima | ⊢ (𝜑 → (◡𝐺 “ 𝑊) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ucnprima.1 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (UnifOn‘𝑋)) | |
2 | ucnprima.2 | . . . 4 ⊢ (𝜑 → 𝑉 ∈ (UnifOn‘𝑌)) | |
3 | ucnprima.3 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑈 Cnu𝑉)) | |
4 | ucnprima.4 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑉) | |
5 | ucnprima.5 | . . . 4 ⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) | |
6 | 1, 2, 3, 4, 5 | ucnima 23579 | . . 3 ⊢ (𝜑 → ∃𝑟 ∈ 𝑈 (𝐺 “ 𝑟) ⊆ 𝑊) |
7 | 5 | mpofun 7474 | . . . . 5 ⊢ Fun 𝐺 |
8 | ustssxp 23502 | . . . . . . 7 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑟 ∈ 𝑈) → 𝑟 ⊆ (𝑋 × 𝑋)) | |
9 | 1, 8 | sylan 580 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → 𝑟 ⊆ (𝑋 × 𝑋)) |
10 | opex 5419 | . . . . . . 7 ⊢ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉 ∈ V | |
11 | 5, 10 | dmmpo 7995 | . . . . . 6 ⊢ dom 𝐺 = (𝑋 × 𝑋) |
12 | 9, 11 | sseqtrrdi 3993 | . . . . 5 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → 𝑟 ⊆ dom 𝐺) |
13 | funimass3 7001 | . . . . 5 ⊢ ((Fun 𝐺 ∧ 𝑟 ⊆ dom 𝐺) → ((𝐺 “ 𝑟) ⊆ 𝑊 ↔ 𝑟 ⊆ (◡𝐺 “ 𝑊))) | |
14 | 7, 12, 13 | sylancr 587 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → ((𝐺 “ 𝑟) ⊆ 𝑊 ↔ 𝑟 ⊆ (◡𝐺 “ 𝑊))) |
15 | 14 | rexbidva 3171 | . . 3 ⊢ (𝜑 → (∃𝑟 ∈ 𝑈 (𝐺 “ 𝑟) ⊆ 𝑊 ↔ ∃𝑟 ∈ 𝑈 𝑟 ⊆ (◡𝐺 “ 𝑊))) |
16 | 6, 15 | mpbid 231 | . 2 ⊢ (𝜑 → ∃𝑟 ∈ 𝑈 𝑟 ⊆ (◡𝐺 “ 𝑊)) |
17 | 1 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → 𝑈 ∈ (UnifOn‘𝑋)) |
18 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → 𝑟 ∈ 𝑈) | |
19 | cnvimass 6031 | . . . . . 6 ⊢ (◡𝐺 “ 𝑊) ⊆ dom 𝐺 | |
20 | 19, 11 | sseqtri 3978 | . . . . 5 ⊢ (◡𝐺 “ 𝑊) ⊆ (𝑋 × 𝑋) |
21 | 20 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → (◡𝐺 “ 𝑊) ⊆ (𝑋 × 𝑋)) |
22 | ustssel 23503 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑟 ∈ 𝑈 ∧ (◡𝐺 “ 𝑊) ⊆ (𝑋 × 𝑋)) → (𝑟 ⊆ (◡𝐺 “ 𝑊) → (◡𝐺 “ 𝑊) ∈ 𝑈)) | |
23 | 17, 18, 21, 22 | syl3anc 1371 | . . 3 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → (𝑟 ⊆ (◡𝐺 “ 𝑊) → (◡𝐺 “ 𝑊) ∈ 𝑈)) |
24 | 23 | rexlimdva 3150 | . 2 ⊢ (𝜑 → (∃𝑟 ∈ 𝑈 𝑟 ⊆ (◡𝐺 “ 𝑊) → (◡𝐺 “ 𝑊) ∈ 𝑈)) |
25 | 16, 24 | mpd 15 | 1 ⊢ (𝜑 → (◡𝐺 “ 𝑊) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∃wrex 3071 ⊆ wss 3908 〈cop 4590 × cxp 5629 ◡ccnv 5630 dom cdm 5631 “ cima 5634 Fun wfun 6487 ‘cfv 6493 (class class class)co 7351 ∈ cmpo 7353 UnifOncust 23497 Cnucucn 23573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7664 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-id 5529 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6445 df-fun 6495 df-fn 6496 df-f 6497 df-fv 6501 df-ov 7354 df-oprab 7355 df-mpo 7356 df-1st 7913 df-2nd 7914 df-map 8725 df-ust 23498 df-ucn 23574 |
This theorem is referenced by: fmucnd 23590 |
Copyright terms: Public domain | W3C validator |