|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ucnprima | Structured version Visualization version GIF version | ||
| Description: The preimage by a uniformly continuous function 𝐹 of an entourage 𝑊 of 𝑌 is an entourage of 𝑋. Note of the definition 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 19-Nov-2017.) | 
| Ref | Expression | 
|---|---|
| ucnprima.1 | ⊢ (𝜑 → 𝑈 ∈ (UnifOn‘𝑋)) | 
| ucnprima.2 | ⊢ (𝜑 → 𝑉 ∈ (UnifOn‘𝑌)) | 
| ucnprima.3 | ⊢ (𝜑 → 𝐹 ∈ (𝑈 Cnu𝑉)) | 
| ucnprima.4 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) | 
| ucnprima.5 | ⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) | 
| Ref | Expression | 
|---|---|
| ucnprima | ⊢ (𝜑 → (◡𝐺 “ 𝑊) ∈ 𝑈) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ucnprima.1 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (UnifOn‘𝑋)) | |
| 2 | ucnprima.2 | . . . 4 ⊢ (𝜑 → 𝑉 ∈ (UnifOn‘𝑌)) | |
| 3 | ucnprima.3 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑈 Cnu𝑉)) | |
| 4 | ucnprima.4 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑉) | |
| 5 | ucnprima.5 | . . . 4 ⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) | |
| 6 | 1, 2, 3, 4, 5 | ucnima 24291 | . . 3 ⊢ (𝜑 → ∃𝑟 ∈ 𝑈 (𝐺 “ 𝑟) ⊆ 𝑊) | 
| 7 | 5 | mpofun 7558 | . . . . 5 ⊢ Fun 𝐺 | 
| 8 | ustssxp 24214 | . . . . . . 7 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑟 ∈ 𝑈) → 𝑟 ⊆ (𝑋 × 𝑋)) | |
| 9 | 1, 8 | sylan 580 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → 𝑟 ⊆ (𝑋 × 𝑋)) | 
| 10 | opex 5468 | . . . . . . 7 ⊢ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉 ∈ V | |
| 11 | 5, 10 | dmmpo 8097 | . . . . . 6 ⊢ dom 𝐺 = (𝑋 × 𝑋) | 
| 12 | 9, 11 | sseqtrrdi 4024 | . . . . 5 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → 𝑟 ⊆ dom 𝐺) | 
| 13 | funimass3 7073 | . . . . 5 ⊢ ((Fun 𝐺 ∧ 𝑟 ⊆ dom 𝐺) → ((𝐺 “ 𝑟) ⊆ 𝑊 ↔ 𝑟 ⊆ (◡𝐺 “ 𝑊))) | |
| 14 | 7, 12, 13 | sylancr 587 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → ((𝐺 “ 𝑟) ⊆ 𝑊 ↔ 𝑟 ⊆ (◡𝐺 “ 𝑊))) | 
| 15 | 14 | rexbidva 3176 | . . 3 ⊢ (𝜑 → (∃𝑟 ∈ 𝑈 (𝐺 “ 𝑟) ⊆ 𝑊 ↔ ∃𝑟 ∈ 𝑈 𝑟 ⊆ (◡𝐺 “ 𝑊))) | 
| 16 | 6, 15 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑟 ∈ 𝑈 𝑟 ⊆ (◡𝐺 “ 𝑊)) | 
| 17 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → 𝑈 ∈ (UnifOn‘𝑋)) | 
| 18 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → 𝑟 ∈ 𝑈) | |
| 19 | cnvimass 6099 | . . . . . 6 ⊢ (◡𝐺 “ 𝑊) ⊆ dom 𝐺 | |
| 20 | 19, 11 | sseqtri 4031 | . . . . 5 ⊢ (◡𝐺 “ 𝑊) ⊆ (𝑋 × 𝑋) | 
| 21 | 20 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → (◡𝐺 “ 𝑊) ⊆ (𝑋 × 𝑋)) | 
| 22 | ustssel 24215 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑟 ∈ 𝑈 ∧ (◡𝐺 “ 𝑊) ⊆ (𝑋 × 𝑋)) → (𝑟 ⊆ (◡𝐺 “ 𝑊) → (◡𝐺 “ 𝑊) ∈ 𝑈)) | |
| 23 | 17, 18, 21, 22 | syl3anc 1372 | . . 3 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → (𝑟 ⊆ (◡𝐺 “ 𝑊) → (◡𝐺 “ 𝑊) ∈ 𝑈)) | 
| 24 | 23 | rexlimdva 3154 | . 2 ⊢ (𝜑 → (∃𝑟 ∈ 𝑈 𝑟 ⊆ (◡𝐺 “ 𝑊) → (◡𝐺 “ 𝑊) ∈ 𝑈)) | 
| 25 | 16, 24 | mpd 15 | 1 ⊢ (𝜑 → (◡𝐺 “ 𝑊) ∈ 𝑈) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3069 ⊆ wss 3950 〈cop 4631 × cxp 5682 ◡ccnv 5683 dom cdm 5684 “ cima 5687 Fun wfun 6554 ‘cfv 6560 (class class class)co 7432 ∈ cmpo 7434 UnifOncust 24209 Cnucucn 24285 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-map 8869 df-ust 24210 df-ucn 24286 | 
| This theorem is referenced by: fmucnd 24302 | 
| Copyright terms: Public domain | W3C validator |