| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ucnprima | Structured version Visualization version GIF version | ||
| Description: The preimage by a uniformly continuous function 𝐹 of an entourage 𝑊 of 𝑌 is an entourage of 𝑋. Note of the definition 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 19-Nov-2017.) |
| Ref | Expression |
|---|---|
| ucnprima.1 | ⊢ (𝜑 → 𝑈 ∈ (UnifOn‘𝑋)) |
| ucnprima.2 | ⊢ (𝜑 → 𝑉 ∈ (UnifOn‘𝑌)) |
| ucnprima.3 | ⊢ (𝜑 → 𝐹 ∈ (𝑈 Cnu𝑉)) |
| ucnprima.4 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
| ucnprima.5 | ⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) |
| Ref | Expression |
|---|---|
| ucnprima | ⊢ (𝜑 → (◡𝐺 “ 𝑊) ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ucnprima.1 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (UnifOn‘𝑋)) | |
| 2 | ucnprima.2 | . . . 4 ⊢ (𝜑 → 𝑉 ∈ (UnifOn‘𝑌)) | |
| 3 | ucnprima.3 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑈 Cnu𝑉)) | |
| 4 | ucnprima.4 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑉) | |
| 5 | ucnprima.5 | . . . 4 ⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) | |
| 6 | 1, 2, 3, 4, 5 | ucnima 24174 | . . 3 ⊢ (𝜑 → ∃𝑟 ∈ 𝑈 (𝐺 “ 𝑟) ⊆ 𝑊) |
| 7 | 5 | mpofun 7515 | . . . . 5 ⊢ Fun 𝐺 |
| 8 | ustssxp 24098 | . . . . . . 7 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑟 ∈ 𝑈) → 𝑟 ⊆ (𝑋 × 𝑋)) | |
| 9 | 1, 8 | sylan 580 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → 𝑟 ⊆ (𝑋 × 𝑋)) |
| 10 | opex 5426 | . . . . . . 7 ⊢ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉 ∈ V | |
| 11 | 5, 10 | dmmpo 8052 | . . . . . 6 ⊢ dom 𝐺 = (𝑋 × 𝑋) |
| 12 | 9, 11 | sseqtrrdi 3990 | . . . . 5 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → 𝑟 ⊆ dom 𝐺) |
| 13 | funimass3 7028 | . . . . 5 ⊢ ((Fun 𝐺 ∧ 𝑟 ⊆ dom 𝐺) → ((𝐺 “ 𝑟) ⊆ 𝑊 ↔ 𝑟 ⊆ (◡𝐺 “ 𝑊))) | |
| 14 | 7, 12, 13 | sylancr 587 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → ((𝐺 “ 𝑟) ⊆ 𝑊 ↔ 𝑟 ⊆ (◡𝐺 “ 𝑊))) |
| 15 | 14 | rexbidva 3156 | . . 3 ⊢ (𝜑 → (∃𝑟 ∈ 𝑈 (𝐺 “ 𝑟) ⊆ 𝑊 ↔ ∃𝑟 ∈ 𝑈 𝑟 ⊆ (◡𝐺 “ 𝑊))) |
| 16 | 6, 15 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑟 ∈ 𝑈 𝑟 ⊆ (◡𝐺 “ 𝑊)) |
| 17 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → 𝑈 ∈ (UnifOn‘𝑋)) |
| 18 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → 𝑟 ∈ 𝑈) | |
| 19 | cnvimass 6055 | . . . . . 6 ⊢ (◡𝐺 “ 𝑊) ⊆ dom 𝐺 | |
| 20 | 19, 11 | sseqtri 3997 | . . . . 5 ⊢ (◡𝐺 “ 𝑊) ⊆ (𝑋 × 𝑋) |
| 21 | 20 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → (◡𝐺 “ 𝑊) ⊆ (𝑋 × 𝑋)) |
| 22 | ustssel 24099 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑟 ∈ 𝑈 ∧ (◡𝐺 “ 𝑊) ⊆ (𝑋 × 𝑋)) → (𝑟 ⊆ (◡𝐺 “ 𝑊) → (◡𝐺 “ 𝑊) ∈ 𝑈)) | |
| 23 | 17, 18, 21, 22 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → (𝑟 ⊆ (◡𝐺 “ 𝑊) → (◡𝐺 “ 𝑊) ∈ 𝑈)) |
| 24 | 23 | rexlimdva 3135 | . 2 ⊢ (𝜑 → (∃𝑟 ∈ 𝑈 𝑟 ⊆ (◡𝐺 “ 𝑊) → (◡𝐺 “ 𝑊) ∈ 𝑈)) |
| 25 | 16, 24 | mpd 15 | 1 ⊢ (𝜑 → (◡𝐺 “ 𝑊) ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 ⊆ wss 3916 〈cop 4597 × cxp 5638 ◡ccnv 5639 dom cdm 5640 “ cima 5643 Fun wfun 6507 ‘cfv 6513 (class class class)co 7389 ∈ cmpo 7391 UnifOncust 24093 Cnucucn 24168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-map 8803 df-ust 24094 df-ucn 24169 |
| This theorem is referenced by: fmucnd 24185 |
| Copyright terms: Public domain | W3C validator |