Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ucnprima | Structured version Visualization version GIF version |
Description: The preimage by a uniformly continuous function 𝐹 of an entourage 𝑊 of 𝑌 is an entourage of 𝑋. Note of the definition 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 19-Nov-2017.) |
Ref | Expression |
---|---|
ucnprima.1 | ⊢ (𝜑 → 𝑈 ∈ (UnifOn‘𝑋)) |
ucnprima.2 | ⊢ (𝜑 → 𝑉 ∈ (UnifOn‘𝑌)) |
ucnprima.3 | ⊢ (𝜑 → 𝐹 ∈ (𝑈 Cnu𝑉)) |
ucnprima.4 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
ucnprima.5 | ⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) |
Ref | Expression |
---|---|
ucnprima | ⊢ (𝜑 → (◡𝐺 “ 𝑊) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ucnprima.1 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (UnifOn‘𝑋)) | |
2 | ucnprima.2 | . . . 4 ⊢ (𝜑 → 𝑉 ∈ (UnifOn‘𝑌)) | |
3 | ucnprima.3 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑈 Cnu𝑉)) | |
4 | ucnprima.4 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑉) | |
5 | ucnprima.5 | . . . 4 ⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) | |
6 | 1, 2, 3, 4, 5 | ucnima 23178 | . . 3 ⊢ (𝜑 → ∃𝑟 ∈ 𝑈 (𝐺 “ 𝑟) ⊆ 𝑊) |
7 | 5 | mpofun 7334 | . . . . 5 ⊢ Fun 𝐺 |
8 | ustssxp 23102 | . . . . . . 7 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑟 ∈ 𝑈) → 𝑟 ⊆ (𝑋 × 𝑋)) | |
9 | 1, 8 | sylan 583 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → 𝑟 ⊆ (𝑋 × 𝑋)) |
10 | opex 5348 | . . . . . . 7 ⊢ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉 ∈ V | |
11 | 5, 10 | dmmpo 7841 | . . . . . 6 ⊢ dom 𝐺 = (𝑋 × 𝑋) |
12 | 9, 11 | sseqtrrdi 3952 | . . . . 5 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → 𝑟 ⊆ dom 𝐺) |
13 | funimass3 6874 | . . . . 5 ⊢ ((Fun 𝐺 ∧ 𝑟 ⊆ dom 𝐺) → ((𝐺 “ 𝑟) ⊆ 𝑊 ↔ 𝑟 ⊆ (◡𝐺 “ 𝑊))) | |
14 | 7, 12, 13 | sylancr 590 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → ((𝐺 “ 𝑟) ⊆ 𝑊 ↔ 𝑟 ⊆ (◡𝐺 “ 𝑊))) |
15 | 14 | rexbidva 3215 | . . 3 ⊢ (𝜑 → (∃𝑟 ∈ 𝑈 (𝐺 “ 𝑟) ⊆ 𝑊 ↔ ∃𝑟 ∈ 𝑈 𝑟 ⊆ (◡𝐺 “ 𝑊))) |
16 | 6, 15 | mpbid 235 | . 2 ⊢ (𝜑 → ∃𝑟 ∈ 𝑈 𝑟 ⊆ (◡𝐺 “ 𝑊)) |
17 | 1 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → 𝑈 ∈ (UnifOn‘𝑋)) |
18 | simpr 488 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → 𝑟 ∈ 𝑈) | |
19 | cnvimass 5949 | . . . . . 6 ⊢ (◡𝐺 “ 𝑊) ⊆ dom 𝐺 | |
20 | 19, 11 | sseqtri 3937 | . . . . 5 ⊢ (◡𝐺 “ 𝑊) ⊆ (𝑋 × 𝑋) |
21 | 20 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → (◡𝐺 “ 𝑊) ⊆ (𝑋 × 𝑋)) |
22 | ustssel 23103 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑟 ∈ 𝑈 ∧ (◡𝐺 “ 𝑊) ⊆ (𝑋 × 𝑋)) → (𝑟 ⊆ (◡𝐺 “ 𝑊) → (◡𝐺 “ 𝑊) ∈ 𝑈)) | |
23 | 17, 18, 21, 22 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → (𝑟 ⊆ (◡𝐺 “ 𝑊) → (◡𝐺 “ 𝑊) ∈ 𝑈)) |
24 | 23 | rexlimdva 3203 | . 2 ⊢ (𝜑 → (∃𝑟 ∈ 𝑈 𝑟 ⊆ (◡𝐺 “ 𝑊) → (◡𝐺 “ 𝑊) ∈ 𝑈)) |
25 | 16, 24 | mpd 15 | 1 ⊢ (𝜑 → (◡𝐺 “ 𝑊) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∃wrex 3062 ⊆ wss 3866 〈cop 4547 × cxp 5549 ◡ccnv 5550 dom cdm 5551 “ cima 5554 Fun wfun 6374 ‘cfv 6380 (class class class)co 7213 ∈ cmpo 7215 UnifOncust 23097 Cnucucn 23172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-1st 7761 df-2nd 7762 df-map 8510 df-ust 23098 df-ucn 23173 |
This theorem is referenced by: fmucnd 23189 |
Copyright terms: Public domain | W3C validator |