Step | Hyp | Ref
| Expression |
1 | | ucnprima.1 |
. . . 4
β’ (π β π β (UnifOnβπ)) |
2 | | ucnprima.2 |
. . . 4
β’ (π β π β (UnifOnβπ)) |
3 | | ucnprima.3 |
. . . 4
β’ (π β πΉ β (π Cnuπ)) |
4 | | ucnprima.4 |
. . . 4
β’ (π β π β π) |
5 | | ucnprima.5 |
. . . 4
β’ πΊ = (π₯ β π, π¦ β π β¦ β¨(πΉβπ₯), (πΉβπ¦)β©) |
6 | 1, 2, 3, 4, 5 | ucnima 24107 |
. . 3
β’ (π β βπ β π (πΊ β π) β π) |
7 | 5 | mpofun 7524 |
. . . . 5
β’ Fun πΊ |
8 | | ustssxp 24030 |
. . . . . . 7
β’ ((π β (UnifOnβπ) β§ π β π) β π β (π Γ π)) |
9 | 1, 8 | sylan 579 |
. . . . . 6
β’ ((π β§ π β π) β π β (π Γ π)) |
10 | | opex 5454 |
. . . . . . 7
β’
β¨(πΉβπ₯), (πΉβπ¦)β© β V |
11 | 5, 10 | dmmpo 8050 |
. . . . . 6
β’ dom πΊ = (π Γ π) |
12 | 9, 11 | sseqtrrdi 4025 |
. . . . 5
β’ ((π β§ π β π) β π β dom πΊ) |
13 | | funimass3 7045 |
. . . . 5
β’ ((Fun
πΊ β§ π β dom πΊ) β ((πΊ β π) β π β π β (β‘πΊ β π))) |
14 | 7, 12, 13 | sylancr 586 |
. . . 4
β’ ((π β§ π β π) β ((πΊ β π) β π β π β (β‘πΊ β π))) |
15 | 14 | rexbidva 3168 |
. . 3
β’ (π β (βπ β π (πΊ β π) β π β βπ β π π β (β‘πΊ β π))) |
16 | 6, 15 | mpbid 231 |
. 2
β’ (π β βπ β π π β (β‘πΊ β π)) |
17 | 1 | adantr 480 |
. . . 4
β’ ((π β§ π β π) β π β (UnifOnβπ)) |
18 | | simpr 484 |
. . . 4
β’ ((π β§ π β π) β π β π) |
19 | | cnvimass 6070 |
. . . . . 6
β’ (β‘πΊ β π) β dom πΊ |
20 | 19, 11 | sseqtri 4010 |
. . . . 5
β’ (β‘πΊ β π) β (π Γ π) |
21 | 20 | a1i 11 |
. . . 4
β’ ((π β§ π β π) β (β‘πΊ β π) β (π Γ π)) |
22 | | ustssel 24031 |
. . . 4
β’ ((π β (UnifOnβπ) β§ π β π β§ (β‘πΊ β π) β (π Γ π)) β (π β (β‘πΊ β π) β (β‘πΊ β π) β π)) |
23 | 17, 18, 21, 22 | syl3anc 1368 |
. . 3
β’ ((π β§ π β π) β (π β (β‘πΊ β π) β (β‘πΊ β π) β π)) |
24 | 23 | rexlimdva 3147 |
. 2
β’ (π β (βπ β π π β (β‘πΊ β π) β (β‘πΊ β π) β π)) |
25 | 16, 24 | mpd 15 |
1
β’ (π β (β‘πΊ β π) β π) |