MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ucnprima Structured version   Visualization version   GIF version

Theorem ucnprima 24206
Description: The preimage by a uniformly continuous function 𝐹 of an entourage 𝑊 of 𝑌 is an entourage of 𝑋. Note of the definition 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 19-Nov-2017.)
Hypotheses
Ref Expression
ucnprima.1 (𝜑𝑈 ∈ (UnifOn‘𝑋))
ucnprima.2 (𝜑𝑉 ∈ (UnifOn‘𝑌))
ucnprima.3 (𝜑𝐹 ∈ (𝑈 Cnu𝑉))
ucnprima.4 (𝜑𝑊𝑉)
ucnprima.5 𝐺 = (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
Assertion
Ref Expression
ucnprima (𝜑 → (𝐺𝑊) ∈ 𝑈)
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝑋,𝑦   𝑥,𝐺,𝑦   𝑥,𝑈,𝑦   𝑥,𝑉   𝑥,𝑊,𝑦   𝑥,𝑌   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑦)   𝑌(𝑦)

Proof of Theorem ucnprima
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 ucnprima.1 . . . 4 (𝜑𝑈 ∈ (UnifOn‘𝑋))
2 ucnprima.2 . . . 4 (𝜑𝑉 ∈ (UnifOn‘𝑌))
3 ucnprima.3 . . . 4 (𝜑𝐹 ∈ (𝑈 Cnu𝑉))
4 ucnprima.4 . . . 4 (𝜑𝑊𝑉)
5 ucnprima.5 . . . 4 𝐺 = (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
61, 2, 3, 4, 5ucnima 24205 . . 3 (𝜑 → ∃𝑟𝑈 (𝐺𝑟) ⊆ 𝑊)
75mpofun 7479 . . . . 5 Fun 𝐺
8 ustssxp 24130 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑟𝑈) → 𝑟 ⊆ (𝑋 × 𝑋))
91, 8sylan 580 . . . . . 6 ((𝜑𝑟𝑈) → 𝑟 ⊆ (𝑋 × 𝑋))
10 opex 5409 . . . . . . 7 ⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ V
115, 10dmmpo 8012 . . . . . 6 dom 𝐺 = (𝑋 × 𝑋)
129, 11sseqtrrdi 3973 . . . . 5 ((𝜑𝑟𝑈) → 𝑟 ⊆ dom 𝐺)
13 funimass3 6996 . . . . 5 ((Fun 𝐺𝑟 ⊆ dom 𝐺) → ((𝐺𝑟) ⊆ 𝑊𝑟 ⊆ (𝐺𝑊)))
147, 12, 13sylancr 587 . . . 4 ((𝜑𝑟𝑈) → ((𝐺𝑟) ⊆ 𝑊𝑟 ⊆ (𝐺𝑊)))
1514rexbidva 3156 . . 3 (𝜑 → (∃𝑟𝑈 (𝐺𝑟) ⊆ 𝑊 ↔ ∃𝑟𝑈 𝑟 ⊆ (𝐺𝑊)))
166, 15mpbid 232 . 2 (𝜑 → ∃𝑟𝑈 𝑟 ⊆ (𝐺𝑊))
171adantr 480 . . . 4 ((𝜑𝑟𝑈) → 𝑈 ∈ (UnifOn‘𝑋))
18 simpr 484 . . . 4 ((𝜑𝑟𝑈) → 𝑟𝑈)
19 cnvimass 6038 . . . . . 6 (𝐺𝑊) ⊆ dom 𝐺
2019, 11sseqtri 3980 . . . . 5 (𝐺𝑊) ⊆ (𝑋 × 𝑋)
2120a1i 11 . . . 4 ((𝜑𝑟𝑈) → (𝐺𝑊) ⊆ (𝑋 × 𝑋))
22 ustssel 24131 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑟𝑈 ∧ (𝐺𝑊) ⊆ (𝑋 × 𝑋)) → (𝑟 ⊆ (𝐺𝑊) → (𝐺𝑊) ∈ 𝑈))
2317, 18, 21, 22syl3anc 1373 . . 3 ((𝜑𝑟𝑈) → (𝑟 ⊆ (𝐺𝑊) → (𝐺𝑊) ∈ 𝑈))
2423rexlimdva 3135 . 2 (𝜑 → (∃𝑟𝑈 𝑟 ⊆ (𝐺𝑊) → (𝐺𝑊) ∈ 𝑈))
2516, 24mpd 15 1 (𝜑 → (𝐺𝑊) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wrex 3058  wss 3899  cop 4583   × cxp 5619  ccnv 5620  dom cdm 5621  cima 5624  Fun wfun 6483  cfv 6489  (class class class)co 7355  cmpo 7357  UnifOncust 24125   Cnucucn 24199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-map 8761  df-ust 24126  df-ucn 24200
This theorem is referenced by:  fmucnd  24216
  Copyright terms: Public domain W3C validator