Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ucnprima | Structured version Visualization version GIF version |
Description: The preimage by a uniformly continuous function 𝐹 of an entourage 𝑊 of 𝑌 is an entourage of 𝑋. Note of the definition 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 19-Nov-2017.) |
Ref | Expression |
---|---|
ucnprima.1 | ⊢ (𝜑 → 𝑈 ∈ (UnifOn‘𝑋)) |
ucnprima.2 | ⊢ (𝜑 → 𝑉 ∈ (UnifOn‘𝑌)) |
ucnprima.3 | ⊢ (𝜑 → 𝐹 ∈ (𝑈 Cnu𝑉)) |
ucnprima.4 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
ucnprima.5 | ⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) |
Ref | Expression |
---|---|
ucnprima | ⊢ (𝜑 → (◡𝐺 “ 𝑊) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ucnprima.1 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (UnifOn‘𝑋)) | |
2 | ucnprima.2 | . . . 4 ⊢ (𝜑 → 𝑉 ∈ (UnifOn‘𝑌)) | |
3 | ucnprima.3 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑈 Cnu𝑉)) | |
4 | ucnprima.4 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑉) | |
5 | ucnprima.5 | . . . 4 ⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) | |
6 | 1, 2, 3, 4, 5 | ucnima 23433 | . . 3 ⊢ (𝜑 → ∃𝑟 ∈ 𝑈 (𝐺 “ 𝑟) ⊆ 𝑊) |
7 | 5 | mpofun 7398 | . . . . 5 ⊢ Fun 𝐺 |
8 | ustssxp 23356 | . . . . . . 7 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑟 ∈ 𝑈) → 𝑟 ⊆ (𝑋 × 𝑋)) | |
9 | 1, 8 | sylan 580 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → 𝑟 ⊆ (𝑋 × 𝑋)) |
10 | opex 5379 | . . . . . . 7 ⊢ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉 ∈ V | |
11 | 5, 10 | dmmpo 7911 | . . . . . 6 ⊢ dom 𝐺 = (𝑋 × 𝑋) |
12 | 9, 11 | sseqtrrdi 3972 | . . . . 5 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → 𝑟 ⊆ dom 𝐺) |
13 | funimass3 6931 | . . . . 5 ⊢ ((Fun 𝐺 ∧ 𝑟 ⊆ dom 𝐺) → ((𝐺 “ 𝑟) ⊆ 𝑊 ↔ 𝑟 ⊆ (◡𝐺 “ 𝑊))) | |
14 | 7, 12, 13 | sylancr 587 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → ((𝐺 “ 𝑟) ⊆ 𝑊 ↔ 𝑟 ⊆ (◡𝐺 “ 𝑊))) |
15 | 14 | rexbidva 3225 | . . 3 ⊢ (𝜑 → (∃𝑟 ∈ 𝑈 (𝐺 “ 𝑟) ⊆ 𝑊 ↔ ∃𝑟 ∈ 𝑈 𝑟 ⊆ (◡𝐺 “ 𝑊))) |
16 | 6, 15 | mpbid 231 | . 2 ⊢ (𝜑 → ∃𝑟 ∈ 𝑈 𝑟 ⊆ (◡𝐺 “ 𝑊)) |
17 | 1 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → 𝑈 ∈ (UnifOn‘𝑋)) |
18 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → 𝑟 ∈ 𝑈) | |
19 | cnvimass 5989 | . . . . . 6 ⊢ (◡𝐺 “ 𝑊) ⊆ dom 𝐺 | |
20 | 19, 11 | sseqtri 3957 | . . . . 5 ⊢ (◡𝐺 “ 𝑊) ⊆ (𝑋 × 𝑋) |
21 | 20 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → (◡𝐺 “ 𝑊) ⊆ (𝑋 × 𝑋)) |
22 | ustssel 23357 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑟 ∈ 𝑈 ∧ (◡𝐺 “ 𝑊) ⊆ (𝑋 × 𝑋)) → (𝑟 ⊆ (◡𝐺 “ 𝑊) → (◡𝐺 “ 𝑊) ∈ 𝑈)) | |
23 | 17, 18, 21, 22 | syl3anc 1370 | . . 3 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → (𝑟 ⊆ (◡𝐺 “ 𝑊) → (◡𝐺 “ 𝑊) ∈ 𝑈)) |
24 | 23 | rexlimdva 3213 | . 2 ⊢ (𝜑 → (∃𝑟 ∈ 𝑈 𝑟 ⊆ (◡𝐺 “ 𝑊) → (◡𝐺 “ 𝑊) ∈ 𝑈)) |
25 | 16, 24 | mpd 15 | 1 ⊢ (𝜑 → (◡𝐺 “ 𝑊) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 ⊆ wss 3887 〈cop 4567 × cxp 5587 ◡ccnv 5588 dom cdm 5589 “ cima 5592 Fun wfun 6427 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 UnifOncust 23351 Cnucucn 23427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-map 8617 df-ust 23352 df-ucn 23428 |
This theorem is referenced by: fmucnd 23444 |
Copyright terms: Public domain | W3C validator |