| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uz0 | Structured version Visualization version GIF version | ||
| Description: The upper integers function applied to a non-integer, is the empty set. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| uz0 | ⊢ (¬ 𝑀 ∈ ℤ → (ℤ≥‘𝑀) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmuz 45221 | . . . . . 6 ⊢ dom ℤ≥ = ℤ | |
| 2 | 1 | eqcomi 2738 | . . . . 5 ⊢ ℤ = dom ℤ≥ |
| 3 | 2 | eleq2i 2820 | . . . 4 ⊢ (𝑀 ∈ ℤ ↔ 𝑀 ∈ dom ℤ≥) |
| 4 | 3 | notbii 320 | . . 3 ⊢ (¬ 𝑀 ∈ ℤ ↔ ¬ 𝑀 ∈ dom ℤ≥) |
| 5 | 4 | biimpi 216 | . 2 ⊢ (¬ 𝑀 ∈ ℤ → ¬ 𝑀 ∈ dom ℤ≥) |
| 6 | ndmfv 6875 | . 2 ⊢ (¬ 𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) = ∅) | |
| 7 | 5, 6 | syl 17 | 1 ⊢ (¬ 𝑀 ∈ ℤ → (ℤ≥‘𝑀) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∅c0 4292 dom cdm 5631 ‘cfv 6499 ℤcz 12505 ℤ≥cuz 12769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-cnex 11100 ax-resscn 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-neg 11384 df-z 12506 df-uz 12770 |
| This theorem is referenced by: uzn0bi 45448 limsupubuz 45704 climlimsupcex 45760 |
| Copyright terms: Public domain | W3C validator |