| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uz0 | Structured version Visualization version GIF version | ||
| Description: The upper integers function applied to a non-integer, is the empty set. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| uz0 | ⊢ (¬ 𝑀 ∈ ℤ → (ℤ≥‘𝑀) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmuz 45225 | . . . . . 6 ⊢ dom ℤ≥ = ℤ | |
| 2 | 1 | eqcomi 2745 | . . . . 5 ⊢ ℤ = dom ℤ≥ |
| 3 | 2 | eleq2i 2827 | . . . 4 ⊢ (𝑀 ∈ ℤ ↔ 𝑀 ∈ dom ℤ≥) |
| 4 | 3 | notbii 320 | . . 3 ⊢ (¬ 𝑀 ∈ ℤ ↔ ¬ 𝑀 ∈ dom ℤ≥) |
| 5 | 4 | biimpi 216 | . 2 ⊢ (¬ 𝑀 ∈ ℤ → ¬ 𝑀 ∈ dom ℤ≥) |
| 6 | ndmfv 6916 | . 2 ⊢ (¬ 𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) = ∅) | |
| 7 | 5, 6 | syl 17 | 1 ⊢ (¬ 𝑀 ∈ ℤ → (ℤ≥‘𝑀) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∅c0 4313 dom cdm 5659 ‘cfv 6536 ℤcz 12593 ℤ≥cuz 12857 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-cnex 11190 ax-resscn 11191 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-neg 11474 df-z 12594 df-uz 12858 |
| This theorem is referenced by: uzn0bi 45453 limsupubuz 45709 climlimsupcex 45765 |
| Copyright terms: Public domain | W3C validator |