|   | Mathbox for Glauco Siliprandi | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uz0 | Structured version Visualization version GIF version | ||
| Description: The upper integers function applied to a non-integer, is the empty set. (Contributed by Glauco Siliprandi, 23-Oct-2021.) | 
| Ref | Expression | 
|---|---|
| uz0 | ⊢ (¬ 𝑀 ∈ ℤ → (ℤ≥‘𝑀) = ∅) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dmuz 45244 | . . . . . 6 ⊢ dom ℤ≥ = ℤ | |
| 2 | 1 | eqcomi 2745 | . . . . 5 ⊢ ℤ = dom ℤ≥ | 
| 3 | 2 | eleq2i 2832 | . . . 4 ⊢ (𝑀 ∈ ℤ ↔ 𝑀 ∈ dom ℤ≥) | 
| 4 | 3 | notbii 320 | . . 3 ⊢ (¬ 𝑀 ∈ ℤ ↔ ¬ 𝑀 ∈ dom ℤ≥) | 
| 5 | 4 | biimpi 216 | . 2 ⊢ (¬ 𝑀 ∈ ℤ → ¬ 𝑀 ∈ dom ℤ≥) | 
| 6 | ndmfv 6940 | . 2 ⊢ (¬ 𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) = ∅) | |
| 7 | 5, 6 | syl 17 | 1 ⊢ (¬ 𝑀 ∈ ℤ → (ℤ≥‘𝑀) = ∅) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2107 ∅c0 4332 dom cdm 5684 ‘cfv 6560 ℤcz 12615 ℤ≥cuz 12879 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-cnex 11212 ax-resscn 11213 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 df-ov 7435 df-neg 11496 df-z 12616 df-uz 12880 | 
| This theorem is referenced by: uzn0bi 45475 limsupubuz 45733 climlimsupcex 45789 | 
| Copyright terms: Public domain | W3C validator |