Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uz0 Structured version   Visualization version   GIF version

Theorem uz0 45428
Description: The upper integers function applied to a non-integer, is the empty set. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
uz0 𝑀 ∈ ℤ → (ℤ𝑀) = ∅)

Proof of Theorem uz0
StepHypRef Expression
1 dmuz 45244 . . . . . 6 dom ℤ = ℤ
21eqcomi 2745 . . . . 5 ℤ = dom ℤ
32eleq2i 2832 . . . 4 (𝑀 ∈ ℤ ↔ 𝑀 ∈ dom ℤ)
43notbii 320 . . 3 𝑀 ∈ ℤ ↔ ¬ 𝑀 ∈ dom ℤ)
54biimpi 216 . 2 𝑀 ∈ ℤ → ¬ 𝑀 ∈ dom ℤ)
6 ndmfv 6940 . 2 𝑀 ∈ dom ℤ → (ℤ𝑀) = ∅)
75, 6syl 17 1 𝑀 ∈ ℤ → (ℤ𝑀) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2107  c0 4332  dom cdm 5684  cfv 6560  cz 12615  cuz 12879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-cnex 11212  ax-resscn 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fv 6568  df-ov 7435  df-neg 11496  df-z 12616  df-uz 12880
This theorem is referenced by:  uzn0bi  45475  limsupubuz  45733  climlimsupcex  45789
  Copyright terms: Public domain W3C validator