Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uz0 Structured version   Visualization version   GIF version

Theorem uz0 45395
Description: The upper integers function applied to a non-integer, is the empty set. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
uz0 𝑀 ∈ ℤ → (ℤ𝑀) = ∅)

Proof of Theorem uz0
StepHypRef Expression
1 dmuz 45216 . . . . . 6 dom ℤ = ℤ
21eqcomi 2738 . . . . 5 ℤ = dom ℤ
32eleq2i 2820 . . . 4 (𝑀 ∈ ℤ ↔ 𝑀 ∈ dom ℤ)
43notbii 320 . . 3 𝑀 ∈ ℤ ↔ ¬ 𝑀 ∈ dom ℤ)
54biimpi 216 . 2 𝑀 ∈ ℤ → ¬ 𝑀 ∈ dom ℤ)
6 ndmfv 6855 . 2 𝑀 ∈ dom ℤ → (ℤ𝑀) = ∅)
75, 6syl 17 1 𝑀 ∈ ℤ → (ℤ𝑀) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  c0 4284  dom cdm 5619  cfv 6482  cz 12471  cuz 12735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-cnex 11065  ax-resscn 11066
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ov 7352  df-neg 11350  df-z 12472  df-uz 12736
This theorem is referenced by:  uzn0bi  45442  limsupubuz  45698  climlimsupcex  45754
  Copyright terms: Public domain W3C validator