Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > uz0 | Structured version Visualization version GIF version |
Description: The upper integers function applied to a non-integer, is the empty set. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
uz0 | ⊢ (¬ 𝑀 ∈ ℤ → (ℤ≥‘𝑀) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmuz 43157 | . . . . . 6 ⊢ dom ℤ≥ = ℤ | |
2 | 1 | eqcomi 2745 | . . . . 5 ⊢ ℤ = dom ℤ≥ |
3 | 2 | eleq2i 2828 | . . . 4 ⊢ (𝑀 ∈ ℤ ↔ 𝑀 ∈ dom ℤ≥) |
4 | 3 | notbii 319 | . . 3 ⊢ (¬ 𝑀 ∈ ℤ ↔ ¬ 𝑀 ∈ dom ℤ≥) |
5 | 4 | biimpi 215 | . 2 ⊢ (¬ 𝑀 ∈ ℤ → ¬ 𝑀 ∈ dom ℤ≥) |
6 | ndmfv 6861 | . 2 ⊢ (¬ 𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) = ∅) | |
7 | 5, 6 | syl 17 | 1 ⊢ (¬ 𝑀 ∈ ℤ → (ℤ≥‘𝑀) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2105 ∅c0 4270 dom cdm 5621 ‘cfv 6480 ℤcz 12421 ℤ≥cuz 12684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pr 5373 ax-cnex 11029 ax-resscn 11030 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-br 5094 df-opab 5156 df-mpt 5177 df-id 5519 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-fv 6488 df-ov 7341 df-neg 11310 df-z 12422 df-uz 12685 |
This theorem is referenced by: uzn0bi 43386 limsupubuz 43642 climlimsupcex 43698 |
Copyright terms: Public domain | W3C validator |