Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrre4 Structured version   Visualization version   GIF version

Theorem xrre4 40433
Description: An extended real is real iff it is not an infinty. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
xrre4 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞)))

Proof of Theorem xrre4
StepHypRef Expression
1 renemnf 10405 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
21adantl 475 . . . 4 ((𝐴 ∈ ℝ*𝐴 ∈ ℝ) → 𝐴 ≠ -∞)
3 renepnf 10404 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
43adantl 475 . . . 4 ((𝐴 ∈ ℝ*𝐴 ∈ ℝ) → 𝐴 ≠ +∞)
52, 4jca 509 . . 3 ((𝐴 ∈ ℝ*𝐴 ∈ ℝ) → (𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞))
65ex 403 . 2 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ → (𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞)))
7 simpl 476 . . . 4 ((𝐴 ∈ ℝ* ∧ (𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞)) → 𝐴 ∈ ℝ*)
8 simprl 789 . . . 4 ((𝐴 ∈ ℝ* ∧ (𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞)) → 𝐴 ≠ -∞)
9 simprr 791 . . . 4 ((𝐴 ∈ ℝ* ∧ (𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞)) → 𝐴 ≠ +∞)
107, 8, 9xrred 40378 . . 3 ((𝐴 ∈ ℝ* ∧ (𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞)) → 𝐴 ∈ ℝ)
1110ex 403 . 2 (𝐴 ∈ ℝ* → ((𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞) → 𝐴 ∈ ℝ))
126, 11impbid 204 1 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wcel 2166  wne 2999  cr 10251  +∞cpnf 10388  -∞cmnf 10389  *cxr 10390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395
This theorem is referenced by:  limsupre2lem  40751
  Copyright terms: Public domain W3C validator