Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrre4 Structured version   Visualization version   GIF version

Theorem xrre4 44666
Description: An extended real is real iff it is not an infinty. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
xrre4 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞)))

Proof of Theorem xrre4
StepHypRef Expression
1 renemnf 11262 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
21adantl 481 . . . 4 ((𝐴 ∈ ℝ*𝐴 ∈ ℝ) → 𝐴 ≠ -∞)
3 renepnf 11261 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
43adantl 481 . . . 4 ((𝐴 ∈ ℝ*𝐴 ∈ ℝ) → 𝐴 ≠ +∞)
52, 4jca 511 . . 3 ((𝐴 ∈ ℝ*𝐴 ∈ ℝ) → (𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞))
65ex 412 . 2 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ → (𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞)))
7 simpl 482 . . . 4 ((𝐴 ∈ ℝ* ∧ (𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞)) → 𝐴 ∈ ℝ*)
8 simprl 768 . . . 4 ((𝐴 ∈ ℝ* ∧ (𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞)) → 𝐴 ≠ -∞)
9 simprr 770 . . . 4 ((𝐴 ∈ ℝ* ∧ (𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞)) → 𝐴 ≠ +∞)
107, 8, 9xrred 44620 . . 3 ((𝐴 ∈ ℝ* ∧ (𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞)) → 𝐴 ∈ ℝ)
1110ex 412 . 2 (𝐴 ∈ ℝ* → ((𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞) → 𝐴 ∈ ℝ))
126, 11impbid 211 1 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2098  wne 2932  cr 11106  +∞cpnf 11244  -∞cmnf 11245  *cxr 11246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11249  df-mnf 11250  df-xr 11251
This theorem is referenced by:  limsupre2lem  44985
  Copyright terms: Public domain W3C validator