Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrre4 Structured version   Visualization version   GIF version

Theorem xrre4 42414
Description: An extended real is real iff it is not an infinty. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
xrre4 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞)))

Proof of Theorem xrre4
StepHypRef Expression
1 renemnf 10728 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
21adantl 485 . . . 4 ((𝐴 ∈ ℝ*𝐴 ∈ ℝ) → 𝐴 ≠ -∞)
3 renepnf 10727 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
43adantl 485 . . . 4 ((𝐴 ∈ ℝ*𝐴 ∈ ℝ) → 𝐴 ≠ +∞)
52, 4jca 515 . . 3 ((𝐴 ∈ ℝ*𝐴 ∈ ℝ) → (𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞))
65ex 416 . 2 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ → (𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞)))
7 simpl 486 . . . 4 ((𝐴 ∈ ℝ* ∧ (𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞)) → 𝐴 ∈ ℝ*)
8 simprl 770 . . . 4 ((𝐴 ∈ ℝ* ∧ (𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞)) → 𝐴 ≠ -∞)
9 simprr 772 . . . 4 ((𝐴 ∈ ℝ* ∧ (𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞)) → 𝐴 ≠ +∞)
107, 8, 9xrred 42365 . . 3 ((𝐴 ∈ ℝ* ∧ (𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞)) → 𝐴 ∈ ℝ)
1110ex 416 . 2 (𝐴 ∈ ℝ* → ((𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞) → 𝐴 ∈ ℝ))
126, 11impbid 215 1 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2111  wne 2951  cr 10574  +∞cpnf 10710  -∞cmnf 10711  *cxr 10712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-pnf 10715  df-mnf 10716  df-xr 10717
This theorem is referenced by:  limsupre2lem  42732
  Copyright terms: Public domain W3C validator