Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrre4 Structured version   Visualization version   GIF version

Theorem xrre4 42841
Description: An extended real is real iff it is not an infinty. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
xrre4 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞)))

Proof of Theorem xrre4
StepHypRef Expression
1 renemnf 10955 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
21adantl 481 . . . 4 ((𝐴 ∈ ℝ*𝐴 ∈ ℝ) → 𝐴 ≠ -∞)
3 renepnf 10954 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
43adantl 481 . . . 4 ((𝐴 ∈ ℝ*𝐴 ∈ ℝ) → 𝐴 ≠ +∞)
52, 4jca 511 . . 3 ((𝐴 ∈ ℝ*𝐴 ∈ ℝ) → (𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞))
65ex 412 . 2 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ → (𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞)))
7 simpl 482 . . . 4 ((𝐴 ∈ ℝ* ∧ (𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞)) → 𝐴 ∈ ℝ*)
8 simprl 767 . . . 4 ((𝐴 ∈ ℝ* ∧ (𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞)) → 𝐴 ≠ -∞)
9 simprr 769 . . . 4 ((𝐴 ∈ ℝ* ∧ (𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞)) → 𝐴 ≠ +∞)
107, 8, 9xrred 42794 . . 3 ((𝐴 ∈ ℝ* ∧ (𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞)) → 𝐴 ∈ ℝ)
1110ex 412 . 2 (𝐴 ∈ ℝ* → ((𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞) → 𝐴 ∈ ℝ))
126, 11impbid 211 1 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108  wne 2942  cr 10801  +∞cpnf 10937  -∞cmnf 10938  *cxr 10939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944
This theorem is referenced by:  limsupre2lem  43155
  Copyright terms: Public domain W3C validator