![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uzssre | Structured version Visualization version GIF version |
Description: An upper set of integers is a subset of the reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
uzssre | ⊢ (ℤ≥‘𝑀) ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzssz 12879 | . 2 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
2 | zssre 12601 | . 2 ⊢ ℤ ⊆ ℝ | |
3 | 1, 2 | sstri 3989 | 1 ⊢ (ℤ≥‘𝑀) ⊆ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3947 ‘cfv 6551 ℝcr 11143 ℤcz 12594 ℤ≥cuz 12858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 ax-cnex 11200 ax-resscn 11201 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-fv 6559 df-ov 7427 df-neg 11483 df-z 12595 df-uz 12859 |
This theorem is referenced by: infdesc 42070 uzublem 44814 uzsscn 44860 limsupvaluz 45098 limsupubuzlem 45102 limsupubuz 45103 limsupmnfuzlem 45116 limsupre3uzlem 45125 |
Copyright terms: Public domain | W3C validator |