![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > uzssre | Structured version Visualization version GIF version |
Description: An upper set of integers is a subset of the Reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
uzssre | ⊢ (ℤ≥‘𝑀) ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzssz 11947 | . 2 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
2 | zssre 11670 | . 2 ⊢ ℤ ⊆ ℝ | |
3 | 1, 2 | sstri 3806 | 1 ⊢ (ℤ≥‘𝑀) ⊆ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3768 ‘cfv 6100 ℝcr 10222 ℤcz 11663 ℤ≥cuz 11927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2776 ax-sep 4974 ax-nul 4982 ax-pow 5034 ax-pr 5096 ax-cnex 10279 ax-resscn 10280 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2785 df-cleq 2791 df-clel 2794 df-nfc 2929 df-ne 2971 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3386 df-sbc 3633 df-dif 3771 df-un 3773 df-in 3775 df-ss 3782 df-nul 4115 df-if 4277 df-pw 4350 df-sn 4368 df-pr 4370 df-op 4374 df-uni 4628 df-br 4843 df-opab 4905 df-mpt 4922 df-id 5219 df-xp 5317 df-rel 5318 df-cnv 5319 df-co 5320 df-dm 5321 df-rn 5322 df-res 5323 df-ima 5324 df-iota 6063 df-fun 6102 df-fn 6103 df-f 6104 df-fv 6108 df-ov 6880 df-neg 10558 df-z 11664 df-uz 11928 |
This theorem is referenced by: uzublem 40389 uzsscn 40438 limsupvaluz 40673 limsupubuzlem 40677 limsupubuz 40678 limsupmnfuzlem 40691 limsupre3uzlem 40700 |
Copyright terms: Public domain | W3C validator |