![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vrgpf | Structured version Visualization version GIF version |
Description: The mapping from the index set to the generators is a function into the free group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
vrgpfval.r | β’ βΌ = ( ~FG βπΌ) |
vrgpfval.u | β’ π = (varFGrpβπΌ) |
vrgpf.m | β’ πΊ = (freeGrpβπΌ) |
vrgpf.x | β’ π = (BaseβπΊ) |
Ref | Expression |
---|---|
vrgpf | β’ (πΌ β π β π:πΌβΆπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vrgpfval.r | . . 3 β’ βΌ = ( ~FG βπΌ) | |
2 | vrgpfval.u | . . 3 β’ π = (varFGrpβπΌ) | |
3 | 1, 2 | vrgpfval 19675 | . 2 β’ (πΌ β π β π = (π β πΌ β¦ [β¨ββ¨π, β β©ββ©] βΌ )) |
4 | 0ex 5307 | . . . . . . . . 9 β’ β β V | |
5 | 4 | prid1 4766 | . . . . . . . 8 β’ β β {β , 1o} |
6 | df2o3 8476 | . . . . . . . 8 β’ 2o = {β , 1o} | |
7 | 5, 6 | eleqtrri 2832 | . . . . . . 7 β’ β β 2o |
8 | opelxpi 5713 | . . . . . . 7 β’ ((π β πΌ β§ β β 2o) β β¨π, β β© β (πΌ Γ 2o)) | |
9 | 7, 8 | mpan2 689 | . . . . . 6 β’ (π β πΌ β β¨π, β β© β (πΌ Γ 2o)) |
10 | 9 | adantl 482 | . . . . 5 β’ ((πΌ β π β§ π β πΌ) β β¨π, β β© β (πΌ Γ 2o)) |
11 | 10 | s1cld 14557 | . . . 4 β’ ((πΌ β π β§ π β πΌ) β β¨ββ¨π, β β©ββ© β Word (πΌ Γ 2o)) |
12 | 2on 8482 | . . . . . . 7 β’ 2o β On | |
13 | xpexg 7739 | . . . . . . 7 β’ ((πΌ β π β§ 2o β On) β (πΌ Γ 2o) β V) | |
14 | 12, 13 | mpan2 689 | . . . . . 6 β’ (πΌ β π β (πΌ Γ 2o) β V) |
15 | 14 | adantr 481 | . . . . 5 β’ ((πΌ β π β§ π β πΌ) β (πΌ Γ 2o) β V) |
16 | wrdexg 14478 | . . . . 5 β’ ((πΌ Γ 2o) β V β Word (πΌ Γ 2o) β V) | |
17 | fvi 6967 | . . . . 5 β’ (Word (πΌ Γ 2o) β V β ( I βWord (πΌ Γ 2o)) = Word (πΌ Γ 2o)) | |
18 | 15, 16, 17 | 3syl 18 | . . . 4 β’ ((πΌ β π β§ π β πΌ) β ( I βWord (πΌ Γ 2o)) = Word (πΌ Γ 2o)) |
19 | 11, 18 | eleqtrrd 2836 | . . 3 β’ ((πΌ β π β§ π β πΌ) β β¨ββ¨π, β β©ββ© β ( I βWord (πΌ Γ 2o))) |
20 | vrgpf.m | . . . 4 β’ πΊ = (freeGrpβπΌ) | |
21 | eqid 2732 | . . . 4 β’ ( I βWord (πΌ Γ 2o)) = ( I βWord (πΌ Γ 2o)) | |
22 | vrgpf.x | . . . 4 β’ π = (BaseβπΊ) | |
23 | 20, 1, 21, 22 | frgpeccl 19670 | . . 3 β’ (β¨ββ¨π, β β©ββ© β ( I βWord (πΌ Γ 2o)) β [β¨ββ¨π, β β©ββ©] βΌ β π) |
24 | 19, 23 | syl 17 | . 2 β’ ((πΌ β π β§ π β πΌ) β [β¨ββ¨π, β β©ββ©] βΌ β π) |
25 | 3, 24 | fmpt3d 7117 | 1 β’ (πΌ β π β π:πΌβΆπ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 Vcvv 3474 β c0 4322 {cpr 4630 β¨cop 4634 I cid 5573 Γ cxp 5674 Oncon0 6364 βΆwf 6539 βcfv 6543 1oc1o 8461 2oc2o 8462 [cec 8703 Word cword 14468 β¨βcs1 14549 Basecbs 17148 ~FG cefg 19615 freeGrpcfrgp 19616 varFGrpcvrgp 19617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-er 8705 df-ec 8707 df-qs 8711 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-inf 9440 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13489 df-fzo 13632 df-hash 14295 df-word 14469 df-s1 14550 df-struct 17084 df-slot 17119 df-ndx 17131 df-base 17149 df-plusg 17214 df-mulr 17215 df-sca 17217 df-vsca 17218 df-ip 17219 df-tset 17220 df-ple 17221 df-ds 17223 df-imas 17458 df-qus 17459 df-frmd 18766 df-frgp 19619 df-vrgp 19620 |
This theorem is referenced by: frgpup3lem 19686 frgpup3 19687 0frgp 19688 frgpnabllem2 19783 frgpnabl 19784 frgpcyg 21348 |
Copyright terms: Public domain | W3C validator |