MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vrgpf Structured version   Visualization version   GIF version

Theorem vrgpf 19374
Description: The mapping from the index set to the generators is a function into the free group. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
vrgpfval.r = ( ~FG𝐼)
vrgpfval.u 𝑈 = (varFGrp𝐼)
vrgpf.m 𝐺 = (freeGrp‘𝐼)
vrgpf.x 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
vrgpf (𝐼𝑉𝑈:𝐼𝑋)

Proof of Theorem vrgpf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 vrgpfval.r . . 3 = ( ~FG𝐼)
2 vrgpfval.u . . 3 𝑈 = (varFGrp𝐼)
31, 2vrgpfval 19372 . 2 (𝐼𝑉𝑈 = (𝑗𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] ))
4 0ex 5231 . . . . . . . . 9 ∅ ∈ V
54prid1 4698 . . . . . . . 8 ∅ ∈ {∅, 1o}
6 df2o3 8305 . . . . . . . 8 2o = {∅, 1o}
75, 6eleqtrri 2838 . . . . . . 7 ∅ ∈ 2o
8 opelxpi 5626 . . . . . . 7 ((𝑗𝐼 ∧ ∅ ∈ 2o) → ⟨𝑗, ∅⟩ ∈ (𝐼 × 2o))
97, 8mpan2 688 . . . . . 6 (𝑗𝐼 → ⟨𝑗, ∅⟩ ∈ (𝐼 × 2o))
109adantl 482 . . . . 5 ((𝐼𝑉𝑗𝐼) → ⟨𝑗, ∅⟩ ∈ (𝐼 × 2o))
1110s1cld 14308 . . . 4 ((𝐼𝑉𝑗𝐼) → ⟨“⟨𝑗, ∅⟩”⟩ ∈ Word (𝐼 × 2o))
12 2on 8311 . . . . . . 7 2o ∈ On
13 xpexg 7600 . . . . . . 7 ((𝐼𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V)
1412, 13mpan2 688 . . . . . 6 (𝐼𝑉 → (𝐼 × 2o) ∈ V)
1514adantr 481 . . . . 5 ((𝐼𝑉𝑗𝐼) → (𝐼 × 2o) ∈ V)
16 wrdexg 14227 . . . . 5 ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V)
17 fvi 6844 . . . . 5 (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
1815, 16, 173syl 18 . . . 4 ((𝐼𝑉𝑗𝐼) → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
1911, 18eleqtrrd 2842 . . 3 ((𝐼𝑉𝑗𝐼) → ⟨“⟨𝑗, ∅⟩”⟩ ∈ ( I ‘Word (𝐼 × 2o)))
20 vrgpf.m . . . 4 𝐺 = (freeGrp‘𝐼)
21 eqid 2738 . . . 4 ( I ‘Word (𝐼 × 2o)) = ( I ‘Word (𝐼 × 2o))
22 vrgpf.x . . . 4 𝑋 = (Base‘𝐺)
2320, 1, 21, 22frgpeccl 19367 . . 3 (⟨“⟨𝑗, ∅⟩”⟩ ∈ ( I ‘Word (𝐼 × 2o)) → [⟨“⟨𝑗, ∅⟩”⟩] 𝑋)
2419, 23syl 17 . 2 ((𝐼𝑉𝑗𝐼) → [⟨“⟨𝑗, ∅⟩”⟩] 𝑋)
253, 24fmpt3d 6990 1 (𝐼𝑉𝑈:𝐼𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  c0 4256  {cpr 4563  cop 4567   I cid 5488   × cxp 5587  Oncon0 6266  wf 6429  cfv 6433  1oc1o 8290  2oc2o 8291  [cec 8496  Word cword 14217  ⟨“cs1 14300  Basecbs 16912   ~FG cefg 19312  freeGrpcfrgp 19313  varFGrpcvrgp 19314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-ec 8500  df-qs 8504  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-s1 14301  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-imas 17219  df-qus 17220  df-frmd 18488  df-frgp 19316  df-vrgp 19317
This theorem is referenced by:  frgpup3lem  19383  frgpup3  19384  0frgp  19385  frgpnabllem2  19475  frgpnabl  19476  frgpcyg  20781
  Copyright terms: Public domain W3C validator