Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vrgpf | Structured version Visualization version GIF version |
Description: The mapping from the index set to the generators is a function into the free group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
vrgpfval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
vrgpfval.u | ⊢ 𝑈 = (varFGrp‘𝐼) |
vrgpf.m | ⊢ 𝐺 = (freeGrp‘𝐼) |
vrgpf.x | ⊢ 𝑋 = (Base‘𝐺) |
Ref | Expression |
---|---|
vrgpf | ⊢ (𝐼 ∈ 𝑉 → 𝑈:𝐼⟶𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vrgpfval.r | . . 3 ⊢ ∼ = ( ~FG ‘𝐼) | |
2 | vrgpfval.u | . . 3 ⊢ 𝑈 = (varFGrp‘𝐼) | |
3 | 1, 2 | vrgpfval 19368 | . 2 ⊢ (𝐼 ∈ 𝑉 → 𝑈 = (𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ )) |
4 | 0ex 5235 | . . . . . . . . 9 ⊢ ∅ ∈ V | |
5 | 4 | prid1 4704 | . . . . . . . 8 ⊢ ∅ ∈ {∅, 1o} |
6 | df2o3 8294 | . . . . . . . 8 ⊢ 2o = {∅, 1o} | |
7 | 5, 6 | eleqtrri 2840 | . . . . . . 7 ⊢ ∅ ∈ 2o |
8 | opelxpi 5626 | . . . . . . 7 ⊢ ((𝑗 ∈ 𝐼 ∧ ∅ ∈ 2o) → 〈𝑗, ∅〉 ∈ (𝐼 × 2o)) | |
9 | 7, 8 | mpan2 688 | . . . . . 6 ⊢ (𝑗 ∈ 𝐼 → 〈𝑗, ∅〉 ∈ (𝐼 × 2o)) |
10 | 9 | adantl 482 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑗 ∈ 𝐼) → 〈𝑗, ∅〉 ∈ (𝐼 × 2o)) |
11 | 10 | s1cld 14304 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑗 ∈ 𝐼) → 〈“〈𝑗, ∅〉”〉 ∈ Word (𝐼 × 2o)) |
12 | 2on 8300 | . . . . . . 7 ⊢ 2o ∈ On | |
13 | xpexg 7592 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V) | |
14 | 12, 13 | mpan2 688 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → (𝐼 × 2o) ∈ V) |
15 | 14 | adantr 481 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑗 ∈ 𝐼) → (𝐼 × 2o) ∈ V) |
16 | wrdexg 14223 | . . . . 5 ⊢ ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V) | |
17 | fvi 6839 | . . . . 5 ⊢ (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)) | |
18 | 15, 16, 17 | 3syl 18 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑗 ∈ 𝐼) → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)) |
19 | 11, 18 | eleqtrrd 2844 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑗 ∈ 𝐼) → 〈“〈𝑗, ∅〉”〉 ∈ ( I ‘Word (𝐼 × 2o))) |
20 | vrgpf.m | . . . 4 ⊢ 𝐺 = (freeGrp‘𝐼) | |
21 | eqid 2740 | . . . 4 ⊢ ( I ‘Word (𝐼 × 2o)) = ( I ‘Word (𝐼 × 2o)) | |
22 | vrgpf.x | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
23 | 20, 1, 21, 22 | frgpeccl 19363 | . . 3 ⊢ (〈“〈𝑗, ∅〉”〉 ∈ ( I ‘Word (𝐼 × 2o)) → [〈“〈𝑗, ∅〉”〉] ∼ ∈ 𝑋) |
24 | 19, 23 | syl 17 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑗 ∈ 𝐼) → [〈“〈𝑗, ∅〉”〉] ∼ ∈ 𝑋) |
25 | 3, 24 | fmpt3d 6985 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝑈:𝐼⟶𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 Vcvv 3431 ∅c0 4262 {cpr 4569 〈cop 4573 I cid 5488 × cxp 5587 Oncon0 6264 ⟶wf 6427 ‘cfv 6431 1oc1o 8279 2oc2o 8280 [cec 8477 Word cword 14213 〈“cs1 14296 Basecbs 16908 ~FG cefg 19308 freeGrpcfrgp 19309 varFGrpcvrgp 19310 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10926 ax-resscn 10927 ax-1cn 10928 ax-icn 10929 ax-addcl 10930 ax-addrcl 10931 ax-mulcl 10932 ax-mulrcl 10933 ax-mulcom 10934 ax-addass 10935 ax-mulass 10936 ax-distr 10937 ax-i2m1 10938 ax-1ne0 10939 ax-1rid 10940 ax-rnegex 10941 ax-rrecex 10942 ax-cnre 10943 ax-pre-lttri 10944 ax-pre-lttrn 10945 ax-pre-ltadd 10946 ax-pre-mulgt0 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7705 df-1st 7822 df-2nd 7823 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-1o 8286 df-2o 8287 df-er 8479 df-ec 8481 df-qs 8485 df-map 8598 df-en 8715 df-dom 8716 df-sdom 8717 df-fin 8718 df-sup 9177 df-inf 9178 df-card 9696 df-pnf 11010 df-mnf 11011 df-xr 11012 df-ltxr 11013 df-le 11014 df-sub 11205 df-neg 11206 df-nn 11972 df-2 12034 df-3 12035 df-4 12036 df-5 12037 df-6 12038 df-7 12039 df-8 12040 df-9 12041 df-n0 12232 df-z 12318 df-dec 12435 df-uz 12580 df-fz 13237 df-fzo 13380 df-hash 14041 df-word 14214 df-s1 14297 df-struct 16844 df-slot 16879 df-ndx 16891 df-base 16909 df-plusg 16971 df-mulr 16972 df-sca 16974 df-vsca 16975 df-ip 16976 df-tset 16977 df-ple 16978 df-ds 16980 df-imas 17215 df-qus 17216 df-frmd 18484 df-frgp 19312 df-vrgp 19313 |
This theorem is referenced by: frgpup3lem 19379 frgpup3 19380 0frgp 19381 frgpnabllem2 19471 frgpnabl 19472 frgpcyg 20777 |
Copyright terms: Public domain | W3C validator |