| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vrgpf | Structured version Visualization version GIF version | ||
| Description: The mapping from the index set to the generators is a function into the free group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| vrgpfval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
| vrgpfval.u | ⊢ 𝑈 = (varFGrp‘𝐼) |
| vrgpf.m | ⊢ 𝐺 = (freeGrp‘𝐼) |
| vrgpf.x | ⊢ 𝑋 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| vrgpf | ⊢ (𝐼 ∈ 𝑉 → 𝑈:𝐼⟶𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vrgpfval.r | . . 3 ⊢ ∼ = ( ~FG ‘𝐼) | |
| 2 | vrgpfval.u | . . 3 ⊢ 𝑈 = (varFGrp‘𝐼) | |
| 3 | 1, 2 | vrgpfval 19747 | . 2 ⊢ (𝐼 ∈ 𝑉 → 𝑈 = (𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ )) |
| 4 | 0ex 5277 | . . . . . . . . 9 ⊢ ∅ ∈ V | |
| 5 | 4 | prid1 4738 | . . . . . . . 8 ⊢ ∅ ∈ {∅, 1o} |
| 6 | df2o3 8488 | . . . . . . . 8 ⊢ 2o = {∅, 1o} | |
| 7 | 5, 6 | eleqtrri 2833 | . . . . . . 7 ⊢ ∅ ∈ 2o |
| 8 | opelxpi 5691 | . . . . . . 7 ⊢ ((𝑗 ∈ 𝐼 ∧ ∅ ∈ 2o) → 〈𝑗, ∅〉 ∈ (𝐼 × 2o)) | |
| 9 | 7, 8 | mpan2 691 | . . . . . 6 ⊢ (𝑗 ∈ 𝐼 → 〈𝑗, ∅〉 ∈ (𝐼 × 2o)) |
| 10 | 9 | adantl 481 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑗 ∈ 𝐼) → 〈𝑗, ∅〉 ∈ (𝐼 × 2o)) |
| 11 | 10 | s1cld 14621 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑗 ∈ 𝐼) → 〈“〈𝑗, ∅〉”〉 ∈ Word (𝐼 × 2o)) |
| 12 | 2on 8494 | . . . . . . 7 ⊢ 2o ∈ On | |
| 13 | xpexg 7744 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V) | |
| 14 | 12, 13 | mpan2 691 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → (𝐼 × 2o) ∈ V) |
| 15 | 14 | adantr 480 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑗 ∈ 𝐼) → (𝐼 × 2o) ∈ V) |
| 16 | wrdexg 14542 | . . . . 5 ⊢ ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V) | |
| 17 | fvi 6955 | . . . . 5 ⊢ (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)) | |
| 18 | 15, 16, 17 | 3syl 18 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑗 ∈ 𝐼) → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)) |
| 19 | 11, 18 | eleqtrrd 2837 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑗 ∈ 𝐼) → 〈“〈𝑗, ∅〉”〉 ∈ ( I ‘Word (𝐼 × 2o))) |
| 20 | vrgpf.m | . . . 4 ⊢ 𝐺 = (freeGrp‘𝐼) | |
| 21 | eqid 2735 | . . . 4 ⊢ ( I ‘Word (𝐼 × 2o)) = ( I ‘Word (𝐼 × 2o)) | |
| 22 | vrgpf.x | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
| 23 | 20, 1, 21, 22 | frgpeccl 19742 | . . 3 ⊢ (〈“〈𝑗, ∅〉”〉 ∈ ( I ‘Word (𝐼 × 2o)) → [〈“〈𝑗, ∅〉”〉] ∼ ∈ 𝑋) |
| 24 | 19, 23 | syl 17 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑗 ∈ 𝐼) → [〈“〈𝑗, ∅〉”〉] ∼ ∈ 𝑋) |
| 25 | 3, 24 | fmpt3d 7106 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝑈:𝐼⟶𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∅c0 4308 {cpr 4603 〈cop 4607 I cid 5547 × cxp 5652 Oncon0 6352 ⟶wf 6527 ‘cfv 6531 1oc1o 8473 2oc2o 8474 [cec 8717 Word cword 14531 〈“cs1 14613 Basecbs 17228 ~FG cefg 19687 freeGrpcfrgp 19688 varFGrpcvrgp 19689 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-ec 8721 df-qs 8725 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-fzo 13672 df-hash 14349 df-word 14532 df-s1 14614 df-struct 17166 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-imas 17522 df-qus 17523 df-frmd 18827 df-frgp 19691 df-vrgp 19692 |
| This theorem is referenced by: frgpup3lem 19758 frgpup3 19759 0frgp 19760 frgpnabllem2 19855 frgpnabl 19856 frgpcyg 21534 |
| Copyright terms: Public domain | W3C validator |