MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vrgpf Structured version   Visualization version   GIF version

Theorem vrgpf 18885
Description: The mapping from the index set to the generators is a function into the free group. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
vrgpfval.r = ( ~FG𝐼)
vrgpfval.u 𝑈 = (varFGrp𝐼)
vrgpf.m 𝐺 = (freeGrp‘𝐼)
vrgpf.x 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
vrgpf (𝐼𝑉𝑈:𝐼𝑋)

Proof of Theorem vrgpf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 vrgpfval.r . . 3 = ( ~FG𝐼)
2 vrgpfval.u . . 3 𝑈 = (varFGrp𝐼)
31, 2vrgpfval 18883 . 2 (𝐼𝑉𝑈 = (𝑗𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] ))
4 0ex 5194 . . . . . . . . 9 ∅ ∈ V
54prid1 4681 . . . . . . . 8 ∅ ∈ {∅, 1o}
6 df2o3 8102 . . . . . . . 8 2o = {∅, 1o}
75, 6eleqtrri 2915 . . . . . . 7 ∅ ∈ 2o
8 opelxpi 5575 . . . . . . 7 ((𝑗𝐼 ∧ ∅ ∈ 2o) → ⟨𝑗, ∅⟩ ∈ (𝐼 × 2o))
97, 8mpan2 690 . . . . . 6 (𝑗𝐼 → ⟨𝑗, ∅⟩ ∈ (𝐼 × 2o))
109adantl 485 . . . . 5 ((𝐼𝑉𝑗𝐼) → ⟨𝑗, ∅⟩ ∈ (𝐼 × 2o))
1110s1cld 13948 . . . 4 ((𝐼𝑉𝑗𝐼) → ⟨“⟨𝑗, ∅⟩”⟩ ∈ Word (𝐼 × 2o))
12 2on 8096 . . . . . . 7 2o ∈ On
13 xpexg 7458 . . . . . . 7 ((𝐼𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V)
1412, 13mpan2 690 . . . . . 6 (𝐼𝑉 → (𝐼 × 2o) ∈ V)
1514adantr 484 . . . . 5 ((𝐼𝑉𝑗𝐼) → (𝐼 × 2o) ∈ V)
16 wrdexg 13867 . . . . 5 ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V)
17 fvi 6723 . . . . 5 (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
1815, 16, 173syl 18 . . . 4 ((𝐼𝑉𝑗𝐼) → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
1911, 18eleqtrrd 2919 . . 3 ((𝐼𝑉𝑗𝐼) → ⟨“⟨𝑗, ∅⟩”⟩ ∈ ( I ‘Word (𝐼 × 2o)))
20 vrgpf.m . . . 4 𝐺 = (freeGrp‘𝐼)
21 eqid 2824 . . . 4 ( I ‘Word (𝐼 × 2o)) = ( I ‘Word (𝐼 × 2o))
22 vrgpf.x . . . 4 𝑋 = (Base‘𝐺)
2320, 1, 21, 22frgpeccl 18878 . . 3 (⟨“⟨𝑗, ∅⟩”⟩ ∈ ( I ‘Word (𝐼 × 2o)) → [⟨“⟨𝑗, ∅⟩”⟩] 𝑋)
2419, 23syl 17 . 2 ((𝐼𝑉𝑗𝐼) → [⟨“⟨𝑗, ∅⟩”⟩] 𝑋)
253, 24fmpt3d 6863 1 (𝐼𝑉𝑈:𝐼𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  Vcvv 3479  c0 4274  {cpr 4550  cop 4554   I cid 5442   × cxp 5536  Oncon0 6174  wf 6334  cfv 6338  1oc1o 8080  2oc2o 8081  [cec 8272  Word cword 13857  ⟨“cs1 13940  Basecbs 16474   ~FG cefg 18823  freeGrpcfrgp 18824  varFGrpcvrgp 18825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5173  ax-sep 5186  ax-nul 5193  ax-pow 5249  ax-pr 5313  ax-un 7446  ax-cnex 10580  ax-resscn 10581  ax-1cn 10582  ax-icn 10583  ax-addcl 10584  ax-addrcl 10585  ax-mulcl 10586  ax-mulrcl 10587  ax-mulcom 10588  ax-addass 10589  ax-mulass 10590  ax-distr 10591  ax-i2m1 10592  ax-1ne0 10593  ax-1rid 10594  ax-rnegex 10595  ax-rrecex 10596  ax-cnre 10597  ax-pre-lttri 10598  ax-pre-lttrn 10599  ax-pre-ltadd 10600  ax-pre-mulgt0 10601
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4822  df-int 4860  df-iun 4904  df-br 5050  df-opab 5112  df-mpt 5130  df-tr 5156  df-id 5443  df-eprel 5448  df-po 5457  df-so 5458  df-fr 5497  df-we 5499  df-xp 5544  df-rel 5545  df-cnv 5546  df-co 5547  df-dm 5548  df-rn 5549  df-res 5550  df-ima 5551  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6297  df-fun 6340  df-fn 6341  df-f 6342  df-f1 6343  df-fo 6344  df-f1o 6345  df-fv 6346  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7674  df-2nd 7675  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-2o 8088  df-oadd 8091  df-er 8274  df-ec 8276  df-qs 8280  df-map 8393  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-sup 8892  df-inf 8893  df-card 9354  df-pnf 10664  df-mnf 10665  df-xr 10666  df-ltxr 10667  df-le 10668  df-sub 10859  df-neg 10860  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-s1 13941  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-plusg 16569  df-mulr 16570  df-sca 16572  df-vsca 16573  df-ip 16574  df-tset 16575  df-ple 16576  df-ds 16578  df-imas 16772  df-qus 16773  df-frmd 18005  df-frgp 18827  df-vrgp 18828
This theorem is referenced by:  frgpup3lem  18894  frgpup3  18895  0frgp  18896  frgpnabllem2  18985  frgpnabl  18986  frgpcyg  20708
  Copyright terms: Public domain W3C validator