Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vrgpf | Structured version Visualization version GIF version |
Description: The mapping from the index set to the generators is a function into the free group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
vrgpfval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
vrgpfval.u | ⊢ 𝑈 = (varFGrp‘𝐼) |
vrgpf.m | ⊢ 𝐺 = (freeGrp‘𝐼) |
vrgpf.x | ⊢ 𝑋 = (Base‘𝐺) |
Ref | Expression |
---|---|
vrgpf | ⊢ (𝐼 ∈ 𝑉 → 𝑈:𝐼⟶𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vrgpfval.r | . . 3 ⊢ ∼ = ( ~FG ‘𝐼) | |
2 | vrgpfval.u | . . 3 ⊢ 𝑈 = (varFGrp‘𝐼) | |
3 | 1, 2 | vrgpfval 19372 | . 2 ⊢ (𝐼 ∈ 𝑉 → 𝑈 = (𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ )) |
4 | 0ex 5231 | . . . . . . . . 9 ⊢ ∅ ∈ V | |
5 | 4 | prid1 4698 | . . . . . . . 8 ⊢ ∅ ∈ {∅, 1o} |
6 | df2o3 8305 | . . . . . . . 8 ⊢ 2o = {∅, 1o} | |
7 | 5, 6 | eleqtrri 2838 | . . . . . . 7 ⊢ ∅ ∈ 2o |
8 | opelxpi 5626 | . . . . . . 7 ⊢ ((𝑗 ∈ 𝐼 ∧ ∅ ∈ 2o) → 〈𝑗, ∅〉 ∈ (𝐼 × 2o)) | |
9 | 7, 8 | mpan2 688 | . . . . . 6 ⊢ (𝑗 ∈ 𝐼 → 〈𝑗, ∅〉 ∈ (𝐼 × 2o)) |
10 | 9 | adantl 482 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑗 ∈ 𝐼) → 〈𝑗, ∅〉 ∈ (𝐼 × 2o)) |
11 | 10 | s1cld 14308 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑗 ∈ 𝐼) → 〈“〈𝑗, ∅〉”〉 ∈ Word (𝐼 × 2o)) |
12 | 2on 8311 | . . . . . . 7 ⊢ 2o ∈ On | |
13 | xpexg 7600 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V) | |
14 | 12, 13 | mpan2 688 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → (𝐼 × 2o) ∈ V) |
15 | 14 | adantr 481 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑗 ∈ 𝐼) → (𝐼 × 2o) ∈ V) |
16 | wrdexg 14227 | . . . . 5 ⊢ ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V) | |
17 | fvi 6844 | . . . . 5 ⊢ (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)) | |
18 | 15, 16, 17 | 3syl 18 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑗 ∈ 𝐼) → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)) |
19 | 11, 18 | eleqtrrd 2842 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑗 ∈ 𝐼) → 〈“〈𝑗, ∅〉”〉 ∈ ( I ‘Word (𝐼 × 2o))) |
20 | vrgpf.m | . . . 4 ⊢ 𝐺 = (freeGrp‘𝐼) | |
21 | eqid 2738 | . . . 4 ⊢ ( I ‘Word (𝐼 × 2o)) = ( I ‘Word (𝐼 × 2o)) | |
22 | vrgpf.x | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
23 | 20, 1, 21, 22 | frgpeccl 19367 | . . 3 ⊢ (〈“〈𝑗, ∅〉”〉 ∈ ( I ‘Word (𝐼 × 2o)) → [〈“〈𝑗, ∅〉”〉] ∼ ∈ 𝑋) |
24 | 19, 23 | syl 17 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑗 ∈ 𝐼) → [〈“〈𝑗, ∅〉”〉] ∼ ∈ 𝑋) |
25 | 3, 24 | fmpt3d 6990 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝑈:𝐼⟶𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 {cpr 4563 〈cop 4567 I cid 5488 × cxp 5587 Oncon0 6266 ⟶wf 6429 ‘cfv 6433 1oc1o 8290 2oc2o 8291 [cec 8496 Word cword 14217 〈“cs1 14300 Basecbs 16912 ~FG cefg 19312 freeGrpcfrgp 19313 varFGrpcvrgp 19314 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-ec 8500 df-qs 8504 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-s1 14301 df-struct 16848 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-imas 17219 df-qus 17220 df-frmd 18488 df-frgp 19316 df-vrgp 19317 |
This theorem is referenced by: frgpup3lem 19383 frgpup3 19384 0frgp 19385 frgpnabllem2 19475 frgpnabl 19476 frgpcyg 20781 |
Copyright terms: Public domain | W3C validator |