MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vrmdf Structured version   Visualization version   GIF version

Theorem vrmdf 18006
Description: The mapping from the index set to the generators is a function into the free monoid. (Contributed by Mario Carneiro, 27-Feb-2016.)
Hypothesis
Ref Expression
vrmdfval.u 𝑈 = (varFMnd𝐼)
Assertion
Ref Expression
vrmdf (𝐼𝑉𝑈:𝐼⟶Word 𝐼)

Proof of Theorem vrmdf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 vrmdfval.u . . 3 𝑈 = (varFMnd𝐼)
21vrmdfval 18004 . 2 (𝐼𝑉𝑈 = (𝑗𝐼 ↦ ⟨“𝑗”⟩))
3 s1cl 13946 . . 3 (𝑗𝐼 → ⟨“𝑗”⟩ ∈ Word 𝐼)
43adantl 482 . 2 ((𝐼𝑉𝑗𝐼) → ⟨“𝑗”⟩ ∈ Word 𝐼)
52, 4fmpt3d 6876 1 (𝐼𝑉𝑈:𝐼⟶Word 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1530  wcel 2107  wf 6348  cfv 6352  Word cword 13851  ⟨“cs1 13939  varFMndcvrmd 17996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-n0 11887  df-z 11971  df-uz 12233  df-fz 12883  df-fzo 13024  df-word 13852  df-s1 13940  df-vrmd 17998
This theorem is referenced by:  frmdgsum  18010  frmdss2  18011  frmdup3lem  18014  frmdup3  18015  frgpup3lem  18823  elmrsubrn  32651
  Copyright terms: Public domain W3C validator