Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frmdadd | Structured version Visualization version GIF version |
Description: Value of the monoid operation of the free monoid construction. (Contributed by Mario Carneiro, 27-Sep-2015.) |
Ref | Expression |
---|---|
frmdbas.m | ⊢ 𝑀 = (freeMnd‘𝐼) |
frmdbas.b | ⊢ 𝐵 = (Base‘𝑀) |
frmdplusg.p | ⊢ + = (+g‘𝑀) |
Ref | Expression |
---|---|
frmdadd | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑋 ++ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frmdbas.m | . . . 4 ⊢ 𝑀 = (freeMnd‘𝐼) | |
2 | frmdbas.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
3 | frmdplusg.p | . . . 4 ⊢ + = (+g‘𝑀) | |
4 | 1, 2, 3 | frmdplusg 18313 | . . 3 ⊢ + = ( ++ ↾ (𝐵 × 𝐵)) |
5 | 4 | oveqi 7247 | . 2 ⊢ (𝑋 + 𝑌) = (𝑋( ++ ↾ (𝐵 × 𝐵))𝑌) |
6 | ovres 7395 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋( ++ ↾ (𝐵 × 𝐵))𝑌) = (𝑋 ++ 𝑌)) | |
7 | 5, 6 | eqtrid 2791 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑋 ++ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 × cxp 5566 ↾ cres 5570 ‘cfv 6400 (class class class)co 7234 ++ cconcat 14157 Basecbs 16792 +gcplusg 16834 freeMndcfrmd 18306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5195 ax-sep 5208 ax-nul 5215 ax-pow 5274 ax-pr 5338 ax-un 7544 ax-cnex 10814 ax-resscn 10815 ax-1cn 10816 ax-icn 10817 ax-addcl 10818 ax-addrcl 10819 ax-mulcl 10820 ax-mulrcl 10821 ax-mulcom 10822 ax-addass 10823 ax-mulass 10824 ax-distr 10825 ax-i2m1 10826 ax-1ne0 10827 ax-1rid 10828 ax-rnegex 10829 ax-rrecex 10830 ax-cnre 10831 ax-pre-lttri 10832 ax-pre-lttrn 10833 ax-pre-ltadd 10834 ax-pre-mulgt0 10835 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4456 df-pw 4531 df-sn 4558 df-pr 4560 df-tp 4562 df-op 4564 df-uni 4836 df-int 4876 df-iun 4922 df-br 5070 df-opab 5132 df-mpt 5152 df-tr 5178 df-id 5471 df-eprel 5477 df-po 5485 df-so 5486 df-fr 5526 df-we 5528 df-xp 5574 df-rel 5575 df-cnv 5576 df-co 5577 df-dm 5578 df-rn 5579 df-res 5580 df-ima 5581 df-pred 6178 df-ord 6236 df-on 6237 df-lim 6238 df-suc 6239 df-iota 6358 df-fun 6402 df-fn 6403 df-f 6404 df-f1 6405 df-fo 6406 df-f1o 6407 df-fv 6408 df-riota 7191 df-ov 7237 df-oprab 7238 df-mpo 7239 df-om 7666 df-1st 7782 df-2nd 7783 df-wrecs 8070 df-recs 8131 df-rdg 8169 df-1o 8225 df-er 8414 df-map 8533 df-en 8650 df-dom 8651 df-sdom 8652 df-fin 8653 df-card 9584 df-pnf 10898 df-mnf 10899 df-xr 10900 df-ltxr 10901 df-le 10902 df-sub 11093 df-neg 11094 df-nn 11860 df-2 11922 df-n0 12120 df-z 12206 df-uz 12468 df-fz 13125 df-fzo 13268 df-hash 13929 df-word 14102 df-concat 14158 df-struct 16732 df-slot 16767 df-ndx 16777 df-base 16793 df-plusg 16847 df-frmd 18308 |
This theorem is referenced by: frmdmnd 18318 frmd0 18319 frmdsssubm 18320 frmdgsum 18321 frmdup1 18323 frgpcpbl 19181 frgp0 19182 frgpadd 19185 frgpmhm 19187 mrsubccat 33223 elmrsubrn 33225 |
Copyright terms: Public domain | W3C validator |