MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdeqd Structured version   Visualization version   GIF version

Theorem vtxdeqd 27258
Description: Equality theorem for the vertex degree: If two graphs are structurally equal, their vertex degree functions are equal. (Contributed by AV, 26-Feb-2021.)
Hypotheses
Ref Expression
vtxdeqd.g (𝜑𝐺𝑋)
vtxdeqd.h (𝜑𝐻𝑌)
vtxdeqd.v (𝜑 → (Vtx‘𝐻) = (Vtx‘𝐺))
vtxdeqd.i (𝜑 → (iEdg‘𝐻) = (iEdg‘𝐺))
Assertion
Ref Expression
vtxdeqd (𝜑 → (VtxDeg‘𝐻) = (VtxDeg‘𝐺))

Proof of Theorem vtxdeqd
Dummy variables 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vtxdeqd.v . . 3 (𝜑 → (Vtx‘𝐻) = (Vtx‘𝐺))
2 vtxdeqd.i . . . . . . 7 (𝜑 → (iEdg‘𝐻) = (iEdg‘𝐺))
32dmeqd 5757 . . . . . 6 (𝜑 → dom (iEdg‘𝐻) = dom (iEdg‘𝐺))
42fveq1d 6655 . . . . . . 7 (𝜑 → ((iEdg‘𝐻)‘𝑥) = ((iEdg‘𝐺)‘𝑥))
54eleq2d 2901 . . . . . 6 (𝜑 → (𝑢 ∈ ((iEdg‘𝐻)‘𝑥) ↔ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)))
63, 5rabeqbidv 3470 . . . . 5 (𝜑 → {𝑥 ∈ dom (iEdg‘𝐻) ∣ 𝑢 ∈ ((iEdg‘𝐻)‘𝑥)} = {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)})
76fveq2d 6657 . . . 4 (𝜑 → (♯‘{𝑥 ∈ dom (iEdg‘𝐻) ∣ 𝑢 ∈ ((iEdg‘𝐻)‘𝑥)}) = (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}))
84eqeq1d 2826 . . . . . 6 (𝜑 → (((iEdg‘𝐻)‘𝑥) = {𝑢} ↔ ((iEdg‘𝐺)‘𝑥) = {𝑢}))
93, 8rabeqbidv 3470 . . . . 5 (𝜑 → {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) = {𝑢}} = {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}})
109fveq2d 6657 . . . 4 (𝜑 → (♯‘{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) = {𝑢}}) = (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}}))
117, 10oveq12d 7158 . . 3 (𝜑 → ((♯‘{𝑥 ∈ dom (iEdg‘𝐻) ∣ 𝑢 ∈ ((iEdg‘𝐻)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) = {𝑢}})) = ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}})))
121, 11mpteq12dv 5134 . 2 (𝜑 → (𝑢 ∈ (Vtx‘𝐻) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐻) ∣ 𝑢 ∈ ((iEdg‘𝐻)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) = {𝑢}}))) = (𝑢 ∈ (Vtx‘𝐺) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}}))))
13 vtxdeqd.h . . 3 (𝜑𝐻𝑌)
14 eqid 2824 . . . 4 (Vtx‘𝐻) = (Vtx‘𝐻)
15 eqid 2824 . . . 4 (iEdg‘𝐻) = (iEdg‘𝐻)
16 eqid 2824 . . . 4 dom (iEdg‘𝐻) = dom (iEdg‘𝐻)
1714, 15, 16vtxdgfval 27248 . . 3 (𝐻𝑌 → (VtxDeg‘𝐻) = (𝑢 ∈ (Vtx‘𝐻) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐻) ∣ 𝑢 ∈ ((iEdg‘𝐻)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) = {𝑢}}))))
1813, 17syl 17 . 2 (𝜑 → (VtxDeg‘𝐻) = (𝑢 ∈ (Vtx‘𝐻) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐻) ∣ 𝑢 ∈ ((iEdg‘𝐻)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) = {𝑢}}))))
19 vtxdeqd.g . . 3 (𝜑𝐺𝑋)
20 eqid 2824 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
21 eqid 2824 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
22 eqid 2824 . . . 4 dom (iEdg‘𝐺) = dom (iEdg‘𝐺)
2320, 21, 22vtxdgfval 27248 . . 3 (𝐺𝑋 → (VtxDeg‘𝐺) = (𝑢 ∈ (Vtx‘𝐺) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}}))))
2419, 23syl 17 . 2 (𝜑 → (VtxDeg‘𝐺) = (𝑢 ∈ (Vtx‘𝐺) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}}))))
2512, 18, 243eqtr4d 2869 1 (𝜑 → (VtxDeg‘𝐻) = (VtxDeg‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2115  {crab 3136  {csn 4548  cmpt 5129  dom cdm 5538  cfv 6338  (class class class)co 7140   +𝑒 cxad 12493  chash 13686  Vtxcvtx 26780  iEdgciedg 26781  VtxDegcvtxdg 27246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5173  ax-sep 5186  ax-nul 5193  ax-pr 5313
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-ral 3137  df-rex 3138  df-reu 3139  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4822  df-iun 4904  df-br 5050  df-opab 5112  df-mpt 5130  df-id 5443  df-xp 5544  df-rel 5545  df-cnv 5546  df-co 5547  df-dm 5548  df-rn 5549  df-res 5550  df-ima 5551  df-iota 6297  df-fun 6340  df-fn 6341  df-f 6342  df-f1 6343  df-fo 6344  df-f1o 6345  df-fv 6346  df-ov 7143  df-vtxdg 27247
This theorem is referenced by:  eupthvdres  28011
  Copyright terms: Public domain W3C validator