MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdeqd Structured version   Visualization version   GIF version

Theorem vtxdeqd 28989
Description: Equality theorem for the vertex degree: If two graphs are structurally equal, their vertex degree functions are equal. (Contributed by AV, 26-Feb-2021.)
Hypotheses
Ref Expression
vtxdeqd.g (πœ‘ β†’ 𝐺 ∈ 𝑋)
vtxdeqd.h (πœ‘ β†’ 𝐻 ∈ π‘Œ)
vtxdeqd.v (πœ‘ β†’ (Vtxβ€˜π») = (Vtxβ€˜πΊ))
vtxdeqd.i (πœ‘ β†’ (iEdgβ€˜π») = (iEdgβ€˜πΊ))
Assertion
Ref Expression
vtxdeqd (πœ‘ β†’ (VtxDegβ€˜π») = (VtxDegβ€˜πΊ))

Proof of Theorem vtxdeqd
Dummy variables 𝑒 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vtxdeqd.v . . 3 (πœ‘ β†’ (Vtxβ€˜π») = (Vtxβ€˜πΊ))
2 vtxdeqd.i . . . . . . 7 (πœ‘ β†’ (iEdgβ€˜π») = (iEdgβ€˜πΊ))
32dmeqd 5905 . . . . . 6 (πœ‘ β†’ dom (iEdgβ€˜π») = dom (iEdgβ€˜πΊ))
42fveq1d 6893 . . . . . . 7 (πœ‘ β†’ ((iEdgβ€˜π»)β€˜π‘₯) = ((iEdgβ€˜πΊ)β€˜π‘₯))
54eleq2d 2819 . . . . . 6 (πœ‘ β†’ (𝑒 ∈ ((iEdgβ€˜π»)β€˜π‘₯) ↔ 𝑒 ∈ ((iEdgβ€˜πΊ)β€˜π‘₯)))
63, 5rabeqbidv 3449 . . . . 5 (πœ‘ β†’ {π‘₯ ∈ dom (iEdgβ€˜π») ∣ 𝑒 ∈ ((iEdgβ€˜π»)β€˜π‘₯)} = {π‘₯ ∈ dom (iEdgβ€˜πΊ) ∣ 𝑒 ∈ ((iEdgβ€˜πΊ)β€˜π‘₯)})
76fveq2d 6895 . . . 4 (πœ‘ β†’ (β™―β€˜{π‘₯ ∈ dom (iEdgβ€˜π») ∣ 𝑒 ∈ ((iEdgβ€˜π»)β€˜π‘₯)}) = (β™―β€˜{π‘₯ ∈ dom (iEdgβ€˜πΊ) ∣ 𝑒 ∈ ((iEdgβ€˜πΊ)β€˜π‘₯)}))
84eqeq1d 2734 . . . . . 6 (πœ‘ β†’ (((iEdgβ€˜π»)β€˜π‘₯) = {𝑒} ↔ ((iEdgβ€˜πΊ)β€˜π‘₯) = {𝑒}))
93, 8rabeqbidv 3449 . . . . 5 (πœ‘ β†’ {π‘₯ ∈ dom (iEdgβ€˜π») ∣ ((iEdgβ€˜π»)β€˜π‘₯) = {𝑒}} = {π‘₯ ∈ dom (iEdgβ€˜πΊ) ∣ ((iEdgβ€˜πΊ)β€˜π‘₯) = {𝑒}})
109fveq2d 6895 . . . 4 (πœ‘ β†’ (β™―β€˜{π‘₯ ∈ dom (iEdgβ€˜π») ∣ ((iEdgβ€˜π»)β€˜π‘₯) = {𝑒}}) = (β™―β€˜{π‘₯ ∈ dom (iEdgβ€˜πΊ) ∣ ((iEdgβ€˜πΊ)β€˜π‘₯) = {𝑒}}))
117, 10oveq12d 7429 . . 3 (πœ‘ β†’ ((β™―β€˜{π‘₯ ∈ dom (iEdgβ€˜π») ∣ 𝑒 ∈ ((iEdgβ€˜π»)β€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ dom (iEdgβ€˜π») ∣ ((iEdgβ€˜π»)β€˜π‘₯) = {𝑒}})) = ((β™―β€˜{π‘₯ ∈ dom (iEdgβ€˜πΊ) ∣ 𝑒 ∈ ((iEdgβ€˜πΊ)β€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ dom (iEdgβ€˜πΊ) ∣ ((iEdgβ€˜πΊ)β€˜π‘₯) = {𝑒}})))
121, 11mpteq12dv 5239 . 2 (πœ‘ β†’ (𝑒 ∈ (Vtxβ€˜π») ↦ ((β™―β€˜{π‘₯ ∈ dom (iEdgβ€˜π») ∣ 𝑒 ∈ ((iEdgβ€˜π»)β€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ dom (iEdgβ€˜π») ∣ ((iEdgβ€˜π»)β€˜π‘₯) = {𝑒}}))) = (𝑒 ∈ (Vtxβ€˜πΊ) ↦ ((β™―β€˜{π‘₯ ∈ dom (iEdgβ€˜πΊ) ∣ 𝑒 ∈ ((iEdgβ€˜πΊ)β€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ dom (iEdgβ€˜πΊ) ∣ ((iEdgβ€˜πΊ)β€˜π‘₯) = {𝑒}}))))
13 vtxdeqd.h . . 3 (πœ‘ β†’ 𝐻 ∈ π‘Œ)
14 eqid 2732 . . . 4 (Vtxβ€˜π») = (Vtxβ€˜π»)
15 eqid 2732 . . . 4 (iEdgβ€˜π») = (iEdgβ€˜π»)
16 eqid 2732 . . . 4 dom (iEdgβ€˜π») = dom (iEdgβ€˜π»)
1714, 15, 16vtxdgfval 28979 . . 3 (𝐻 ∈ π‘Œ β†’ (VtxDegβ€˜π») = (𝑒 ∈ (Vtxβ€˜π») ↦ ((β™―β€˜{π‘₯ ∈ dom (iEdgβ€˜π») ∣ 𝑒 ∈ ((iEdgβ€˜π»)β€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ dom (iEdgβ€˜π») ∣ ((iEdgβ€˜π»)β€˜π‘₯) = {𝑒}}))))
1813, 17syl 17 . 2 (πœ‘ β†’ (VtxDegβ€˜π») = (𝑒 ∈ (Vtxβ€˜π») ↦ ((β™―β€˜{π‘₯ ∈ dom (iEdgβ€˜π») ∣ 𝑒 ∈ ((iEdgβ€˜π»)β€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ dom (iEdgβ€˜π») ∣ ((iEdgβ€˜π»)β€˜π‘₯) = {𝑒}}))))
19 vtxdeqd.g . . 3 (πœ‘ β†’ 𝐺 ∈ 𝑋)
20 eqid 2732 . . . 4 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
21 eqid 2732 . . . 4 (iEdgβ€˜πΊ) = (iEdgβ€˜πΊ)
22 eqid 2732 . . . 4 dom (iEdgβ€˜πΊ) = dom (iEdgβ€˜πΊ)
2320, 21, 22vtxdgfval 28979 . . 3 (𝐺 ∈ 𝑋 β†’ (VtxDegβ€˜πΊ) = (𝑒 ∈ (Vtxβ€˜πΊ) ↦ ((β™―β€˜{π‘₯ ∈ dom (iEdgβ€˜πΊ) ∣ 𝑒 ∈ ((iEdgβ€˜πΊ)β€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ dom (iEdgβ€˜πΊ) ∣ ((iEdgβ€˜πΊ)β€˜π‘₯) = {𝑒}}))))
2419, 23syl 17 . 2 (πœ‘ β†’ (VtxDegβ€˜πΊ) = (𝑒 ∈ (Vtxβ€˜πΊ) ↦ ((β™―β€˜{π‘₯ ∈ dom (iEdgβ€˜πΊ) ∣ 𝑒 ∈ ((iEdgβ€˜πΊ)β€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ dom (iEdgβ€˜πΊ) ∣ ((iEdgβ€˜πΊ)β€˜π‘₯) = {𝑒}}))))
2512, 18, 243eqtr4d 2782 1 (πœ‘ β†’ (VtxDegβ€˜π») = (VtxDegβ€˜πΊ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  {crab 3432  {csn 4628   ↦ cmpt 5231  dom cdm 5676  β€˜cfv 6543  (class class class)co 7411   +𝑒 cxad 13094  β™―chash 14294  Vtxcvtx 28511  iEdgciedg 28512  VtxDegcvtxdg 28977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-vtxdg 28978
This theorem is referenced by:  eupthvdres  29743
  Copyright terms: Public domain W3C validator