Step | Hyp | Ref
| Expression |
1 | | vtxdeqd.v |
. . 3
β’ (π β (Vtxβπ») = (VtxβπΊ)) |
2 | | vtxdeqd.i |
. . . . . . 7
β’ (π β (iEdgβπ») = (iEdgβπΊ)) |
3 | 2 | dmeqd 5905 |
. . . . . 6
β’ (π β dom (iEdgβπ») = dom (iEdgβπΊ)) |
4 | 2 | fveq1d 6893 |
. . . . . . 7
β’ (π β ((iEdgβπ»)βπ₯) = ((iEdgβπΊ)βπ₯)) |
5 | 4 | eleq2d 2819 |
. . . . . 6
β’ (π β (π’ β ((iEdgβπ»)βπ₯) β π’ β ((iEdgβπΊ)βπ₯))) |
6 | 3, 5 | rabeqbidv 3449 |
. . . . 5
β’ (π β {π₯ β dom (iEdgβπ») β£ π’ β ((iEdgβπ»)βπ₯)} = {π₯ β dom (iEdgβπΊ) β£ π’ β ((iEdgβπΊ)βπ₯)}) |
7 | 6 | fveq2d 6895 |
. . . 4
β’ (π β (β―β{π₯ β dom (iEdgβπ») β£ π’ β ((iEdgβπ»)βπ₯)}) = (β―β{π₯ β dom (iEdgβπΊ) β£ π’ β ((iEdgβπΊ)βπ₯)})) |
8 | 4 | eqeq1d 2734 |
. . . . . 6
β’ (π β (((iEdgβπ»)βπ₯) = {π’} β ((iEdgβπΊ)βπ₯) = {π’})) |
9 | 3, 8 | rabeqbidv 3449 |
. . . . 5
β’ (π β {π₯ β dom (iEdgβπ») β£ ((iEdgβπ»)βπ₯) = {π’}} = {π₯ β dom (iEdgβπΊ) β£ ((iEdgβπΊ)βπ₯) = {π’}}) |
10 | 9 | fveq2d 6895 |
. . . 4
β’ (π β (β―β{π₯ β dom (iEdgβπ») β£ ((iEdgβπ»)βπ₯) = {π’}}) = (β―β{π₯ β dom (iEdgβπΊ) β£ ((iEdgβπΊ)βπ₯) = {π’}})) |
11 | 7, 10 | oveq12d 7429 |
. . 3
β’ (π β ((β―β{π₯ β dom (iEdgβπ») β£ π’ β ((iEdgβπ»)βπ₯)}) +π
(β―β{π₯ β
dom (iEdgβπ») β£
((iEdgβπ»)βπ₯) = {π’}})) = ((β―β{π₯ β dom (iEdgβπΊ) β£ π’ β ((iEdgβπΊ)βπ₯)}) +π
(β―β{π₯ β
dom (iEdgβπΊ) β£
((iEdgβπΊ)βπ₯) = {π’}}))) |
12 | 1, 11 | mpteq12dv 5239 |
. 2
β’ (π β (π’ β (Vtxβπ») β¦ ((β―β{π₯ β dom (iEdgβπ») β£ π’ β ((iEdgβπ»)βπ₯)}) +π
(β―β{π₯ β
dom (iEdgβπ») β£
((iEdgβπ»)βπ₯) = {π’}}))) = (π’ β (VtxβπΊ) β¦ ((β―β{π₯ β dom (iEdgβπΊ) β£ π’ β ((iEdgβπΊ)βπ₯)}) +π
(β―β{π₯ β
dom (iEdgβπΊ) β£
((iEdgβπΊ)βπ₯) = {π’}})))) |
13 | | vtxdeqd.h |
. . 3
β’ (π β π» β π) |
14 | | eqid 2732 |
. . . 4
β’
(Vtxβπ») =
(Vtxβπ») |
15 | | eqid 2732 |
. . . 4
β’
(iEdgβπ») =
(iEdgβπ») |
16 | | eqid 2732 |
. . . 4
β’ dom
(iEdgβπ») = dom
(iEdgβπ») |
17 | 14, 15, 16 | vtxdgfval 28979 |
. . 3
β’ (π» β π β (VtxDegβπ») = (π’ β (Vtxβπ») β¦ ((β―β{π₯ β dom (iEdgβπ») β£ π’ β ((iEdgβπ»)βπ₯)}) +π
(β―β{π₯ β
dom (iEdgβπ») β£
((iEdgβπ»)βπ₯) = {π’}})))) |
18 | 13, 17 | syl 17 |
. 2
β’ (π β (VtxDegβπ») = (π’ β (Vtxβπ») β¦ ((β―β{π₯ β dom (iEdgβπ») β£ π’ β ((iEdgβπ»)βπ₯)}) +π
(β―β{π₯ β
dom (iEdgβπ») β£
((iEdgβπ»)βπ₯) = {π’}})))) |
19 | | vtxdeqd.g |
. . 3
β’ (π β πΊ β π) |
20 | | eqid 2732 |
. . . 4
β’
(VtxβπΊ) =
(VtxβπΊ) |
21 | | eqid 2732 |
. . . 4
β’
(iEdgβπΊ) =
(iEdgβπΊ) |
22 | | eqid 2732 |
. . . 4
β’ dom
(iEdgβπΊ) = dom
(iEdgβπΊ) |
23 | 20, 21, 22 | vtxdgfval 28979 |
. . 3
β’ (πΊ β π β (VtxDegβπΊ) = (π’ β (VtxβπΊ) β¦ ((β―β{π₯ β dom (iEdgβπΊ) β£ π’ β ((iEdgβπΊ)βπ₯)}) +π
(β―β{π₯ β
dom (iEdgβπΊ) β£
((iEdgβπΊ)βπ₯) = {π’}})))) |
24 | 19, 23 | syl 17 |
. 2
β’ (π β (VtxDegβπΊ) = (π’ β (VtxβπΊ) β¦ ((β―β{π₯ β dom (iEdgβπΊ) β£ π’ β ((iEdgβπΊ)βπ₯)}) +π
(β―β{π₯ β
dom (iEdgβπΊ) β£
((iEdgβπΊ)βπ₯) = {π’}})))) |
25 | 12, 18, 24 | 3eqtr4d 2782 |
1
β’ (π β (VtxDegβπ») = (VtxDegβπΊ)) |