MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdeqd Structured version   Visualization version   GIF version

Theorem vtxdeqd 29458
Description: Equality theorem for the vertex degree: If two graphs are structurally equal, their vertex degree functions are equal. (Contributed by AV, 26-Feb-2021.)
Hypotheses
Ref Expression
vtxdeqd.g (𝜑𝐺𝑋)
vtxdeqd.h (𝜑𝐻𝑌)
vtxdeqd.v (𝜑 → (Vtx‘𝐻) = (Vtx‘𝐺))
vtxdeqd.i (𝜑 → (iEdg‘𝐻) = (iEdg‘𝐺))
Assertion
Ref Expression
vtxdeqd (𝜑 → (VtxDeg‘𝐻) = (VtxDeg‘𝐺))

Proof of Theorem vtxdeqd
Dummy variables 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vtxdeqd.v . . 3 (𝜑 → (Vtx‘𝐻) = (Vtx‘𝐺))
2 vtxdeqd.i . . . . . . 7 (𝜑 → (iEdg‘𝐻) = (iEdg‘𝐺))
32dmeqd 5859 . . . . . 6 (𝜑 → dom (iEdg‘𝐻) = dom (iEdg‘𝐺))
42fveq1d 6842 . . . . . . 7 (𝜑 → ((iEdg‘𝐻)‘𝑥) = ((iEdg‘𝐺)‘𝑥))
54eleq2d 2814 . . . . . 6 (𝜑 → (𝑢 ∈ ((iEdg‘𝐻)‘𝑥) ↔ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)))
63, 5rabeqbidv 3421 . . . . 5 (𝜑 → {𝑥 ∈ dom (iEdg‘𝐻) ∣ 𝑢 ∈ ((iEdg‘𝐻)‘𝑥)} = {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)})
76fveq2d 6844 . . . 4 (𝜑 → (♯‘{𝑥 ∈ dom (iEdg‘𝐻) ∣ 𝑢 ∈ ((iEdg‘𝐻)‘𝑥)}) = (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}))
84eqeq1d 2731 . . . . . 6 (𝜑 → (((iEdg‘𝐻)‘𝑥) = {𝑢} ↔ ((iEdg‘𝐺)‘𝑥) = {𝑢}))
93, 8rabeqbidv 3421 . . . . 5 (𝜑 → {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) = {𝑢}} = {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}})
109fveq2d 6844 . . . 4 (𝜑 → (♯‘{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) = {𝑢}}) = (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}}))
117, 10oveq12d 7387 . . 3 (𝜑 → ((♯‘{𝑥 ∈ dom (iEdg‘𝐻) ∣ 𝑢 ∈ ((iEdg‘𝐻)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) = {𝑢}})) = ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}})))
121, 11mpteq12dv 5189 . 2 (𝜑 → (𝑢 ∈ (Vtx‘𝐻) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐻) ∣ 𝑢 ∈ ((iEdg‘𝐻)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) = {𝑢}}))) = (𝑢 ∈ (Vtx‘𝐺) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}}))))
13 vtxdeqd.h . . 3 (𝜑𝐻𝑌)
14 eqid 2729 . . . 4 (Vtx‘𝐻) = (Vtx‘𝐻)
15 eqid 2729 . . . 4 (iEdg‘𝐻) = (iEdg‘𝐻)
16 eqid 2729 . . . 4 dom (iEdg‘𝐻) = dom (iEdg‘𝐻)
1714, 15, 16vtxdgfval 29448 . . 3 (𝐻𝑌 → (VtxDeg‘𝐻) = (𝑢 ∈ (Vtx‘𝐻) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐻) ∣ 𝑢 ∈ ((iEdg‘𝐻)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) = {𝑢}}))))
1813, 17syl 17 . 2 (𝜑 → (VtxDeg‘𝐻) = (𝑢 ∈ (Vtx‘𝐻) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐻) ∣ 𝑢 ∈ ((iEdg‘𝐻)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) = {𝑢}}))))
19 vtxdeqd.g . . 3 (𝜑𝐺𝑋)
20 eqid 2729 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
21 eqid 2729 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
22 eqid 2729 . . . 4 dom (iEdg‘𝐺) = dom (iEdg‘𝐺)
2320, 21, 22vtxdgfval 29448 . . 3 (𝐺𝑋 → (VtxDeg‘𝐺) = (𝑢 ∈ (Vtx‘𝐺) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}}))))
2419, 23syl 17 . 2 (𝜑 → (VtxDeg‘𝐺) = (𝑢 ∈ (Vtx‘𝐺) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}}))))
2512, 18, 243eqtr4d 2774 1 (𝜑 → (VtxDeg‘𝐻) = (VtxDeg‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3402  {csn 4585  cmpt 5183  dom cdm 5631  cfv 6499  (class class class)co 7369   +𝑒 cxad 13046  chash 14271  Vtxcvtx 28976  iEdgciedg 28977  VtxDegcvtxdg 29446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-vtxdg 29447
This theorem is referenced by:  eupthvdres  30214
  Copyright terms: Public domain W3C validator