![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtxdgfisf | Structured version Visualization version GIF version |
Description: The vertex degree function on graphs of finite size is a function from vertices to nonnegative integers. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 11-Dec-2020.) |
Ref | Expression |
---|---|
vtxdgf.v | β’ π = (VtxβπΊ) |
vtxdg0e.i | β’ πΌ = (iEdgβπΊ) |
vtxdgfisnn0.a | β’ π΄ = dom πΌ |
Ref | Expression |
---|---|
vtxdgfisf | β’ ((πΊ β π β§ π΄ β Fin) β (VtxDegβπΊ):πβΆβ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxdgf.v | . . . . 5 β’ π = (VtxβπΊ) | |
2 | 1 | vtxdgf 29163 | . . . 4 β’ (πΊ β π β (VtxDegβπΊ):πβΆβ0*) |
3 | 2 | adantr 480 | . . 3 β’ ((πΊ β π β§ π΄ β Fin) β (VtxDegβπΊ):πβΆβ0*) |
4 | 3 | ffnd 6708 | . 2 β’ ((πΊ β π β§ π΄ β Fin) β (VtxDegβπΊ) Fn π) |
5 | vtxdg0e.i | . . . . 5 β’ πΌ = (iEdgβπΊ) | |
6 | vtxdgfisnn0.a | . . . . 5 β’ π΄ = dom πΌ | |
7 | 1, 5, 6 | vtxdgfisnn0 29167 | . . . 4 β’ ((π΄ β Fin β§ π’ β π) β ((VtxDegβπΊ)βπ’) β β0) |
8 | 7 | adantll 711 | . . 3 β’ (((πΊ β π β§ π΄ β Fin) β§ π’ β π) β ((VtxDegβπΊ)βπ’) β β0) |
9 | 8 | ralrimiva 3138 | . 2 β’ ((πΊ β π β§ π΄ β Fin) β βπ’ β π ((VtxDegβπΊ)βπ’) β β0) |
10 | ffnfv 7110 | . 2 β’ ((VtxDegβπΊ):πβΆβ0 β ((VtxDegβπΊ) Fn π β§ βπ’ β π ((VtxDegβπΊ)βπ’) β β0)) | |
11 | 4, 9, 10 | sylanbrc 582 | 1 β’ ((πΊ β π β§ π΄ β Fin) β (VtxDegβπΊ):πβΆβ0) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 βwral 3053 dom cdm 5666 Fn wfn 6528 βΆwf 6529 βcfv 6533 Fincfn 8934 β0cn0 12468 β0*cxnn0 12540 Vtxcvtx 28691 iEdgciedg 28692 VtxDegcvtxdg 29157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-card 9929 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-xnn0 12541 df-z 12555 df-uz 12819 df-xadd 13089 df-hash 14287 df-vtxdg 29158 |
This theorem is referenced by: vtxdgfusgrf 29189 eupth2lem3lem1 29916 eupth2lem3lem2 29917 |
Copyright terms: Public domain | W3C validator |