| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wspthsswwlknon | Structured version Visualization version GIF version | ||
| Description: The set of simple paths of a fixed length between two vertices is a subset of the set of walks of the fixed length between the two vertices. (Contributed by AV, 15-May-2021.) |
| Ref | Expression |
|---|---|
| wspthsswwlknon | ⊢ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ⊆ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | 1 | wspthnonp 29837 | . . 3 ⊢ (𝑤 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) → ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))) |
| 3 | simp3l 1202 | . . 3 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)) → 𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵)) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝑤 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) → 𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵)) |
| 5 | 4 | ssriv 3933 | 1 ⊢ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ⊆ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 ℕ0cn0 12381 Vtxcvtx 28974 SPathsOncspthson 29691 WWalksNOn cwwlksnon 29805 WSPathsNOn cwwspthsnon 29807 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-wwlksnon 29810 df-wspthsnon 29812 |
| This theorem is referenced by: wspthnonfi 29900 |
| Copyright terms: Public domain | W3C validator |