MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspthsswwlknon Structured version   Visualization version   GIF version

Theorem wspthsswwlknon 29824
Description: The set of simple paths of a fixed length between two vertices is a subset of the set of walks of the fixed length between the two vertices. (Contributed by AV, 15-May-2021.)
Assertion
Ref Expression
wspthsswwlknon (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ⊆ (𝐴(𝑁 WWalksNOn 𝐺)𝐵)

Proof of Theorem wspthsswwlknon
Dummy variables 𝑓 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
21wspthnonp 29762 . . 3 (𝑤 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)))
3 simp3l 1202 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)) → 𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵))
42, 3syl 17 . 2 (𝑤 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) → 𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵))
54ssriv 3947 1 (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ⊆ (𝐴(𝑁 WWalksNOn 𝐺)𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086  wex 1779  wcel 2109  Vcvv 3444  wss 3911   class class class wbr 5102  cfv 6499  (class class class)co 7369  0cn0 12418  Vtxcvtx 28899  SPathsOncspthson 29616   WWalksNOn cwwlksnon 29730   WSPathsNOn cwwspthsnon 29732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-wwlksnon 29735  df-wspthsnon 29737
This theorem is referenced by:  wspthnonfi  29825
  Copyright terms: Public domain W3C validator