MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspthnonp Structured version   Visualization version   GIF version

Theorem wspthnonp 27645
Description: Properties of a set being a simple path of a fixed length between two vertices as word. (Contributed by AV, 14-May-2021.) (Proof shortened by AV, 15-Mar-2022.)
Hypothesis
Ref Expression
wspthnonp.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wspthnonp (𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉) ∧ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊)))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑓,𝐺   𝑓,𝑁   𝑓,𝑉   𝑓,𝑊

Proof of Theorem wspthnonp
Dummy variables 𝑤 𝑎 𝑏 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6658 . . . . 5 (Vtx‘𝑔) ∈ V
21, 1pm3.2i 474 . . . 4 ((Vtx‘𝑔) ∈ V ∧ (Vtx‘𝑔) ∈ V)
32rgen2w 3119 . . 3 𝑛 ∈ ℕ0𝑔 ∈ V ((Vtx‘𝑔) ∈ V ∧ (Vtx‘𝑔) ∈ V)
4 df-wspthsnon 27620 . . . 4 WSPathsNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑎(𝑛 WWalksNOn 𝑔)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤}))
5 fveq2 6645 . . . . . 6 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
65, 5jca 515 . . . . 5 (𝑔 = 𝐺 → ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (Vtx‘𝑔) = (Vtx‘𝐺)))
76adantl 485 . . . 4 ((𝑛 = 𝑁𝑔 = 𝐺) → ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (Vtx‘𝑔) = (Vtx‘𝐺)))
84, 7el2mpocl 7764 . . 3 (∀𝑛 ∈ ℕ0𝑔 ∈ V ((Vtx‘𝑔) ∈ V ∧ (Vtx‘𝑔) ∈ V) → (𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))))
93, 8ax-mp 5 . 2 (𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))))
10 simprl 770 . . 3 ((𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ∧ ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))) → (𝑁 ∈ ℕ0𝐺 ∈ V))
11 wspthnonp.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
1211eleq2i 2881 . . . . . . 7 (𝐴𝑉𝐴 ∈ (Vtx‘𝐺))
1311eleq2i 2881 . . . . . . 7 (𝐵𝑉𝐵 ∈ (Vtx‘𝐺))
1412, 13anbi12i 629 . . . . . 6 ((𝐴𝑉𝐵𝑉) ↔ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
1514biimpri 231 . . . . 5 ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (𝐴𝑉𝐵𝑉))
1615adantl 485 . . . 4 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) → (𝐴𝑉𝐵𝑉))
1716adantl 485 . . 3 ((𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ∧ ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))) → (𝐴𝑉𝐵𝑉))
18 wspthnon 27644 . . . . 5 (𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ↔ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊))
1918biimpi 219 . . . 4 (𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) → (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊))
2019adantr 484 . . 3 ((𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ∧ ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))) → (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊))
2110, 17, 203jca 1125 . 2 ((𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ∧ ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉) ∧ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊)))
229, 21mpdan 686 1 (𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉) ∧ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  wral 3106  {crab 3110  Vcvv 3441   class class class wbr 5030  cfv 6324  (class class class)co 7135  0cn0 11885  Vtxcvtx 26789  SPathsOncspthson 27504   WWalksNOn cwwlksnon 27613   WSPathsNOn cwwspthsnon 27615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-wwlksnon 27618  df-wspthsnon 27620
This theorem is referenced by:  wspthneq1eq2  27646  wspthsnonn0vne  27703  wspthsswwlknon  27707
  Copyright terms: Public domain W3C validator