MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspthnonp Structured version   Visualization version   GIF version

Theorem wspthnonp 29796
Description: Properties of a set being a simple path of a fixed length between two vertices as word. (Contributed by AV, 14-May-2021.) (Proof shortened by AV, 15-Mar-2022.)
Hypothesis
Ref Expression
wspthnonp.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wspthnonp (𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉) ∧ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊)))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑓,𝐺   𝑓,𝑁   𝑓,𝑉   𝑓,𝑊

Proof of Theorem wspthnonp
Dummy variables 𝑤 𝑎 𝑏 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6874 . . . . 5 (Vtx‘𝑔) ∈ V
21, 1pm3.2i 470 . . . 4 ((Vtx‘𝑔) ∈ V ∧ (Vtx‘𝑔) ∈ V)
32rgen2w 3050 . . 3 𝑛 ∈ ℕ0𝑔 ∈ V ((Vtx‘𝑔) ∈ V ∧ (Vtx‘𝑔) ∈ V)
4 df-wspthsnon 29771 . . . 4 WSPathsNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑎(𝑛 WWalksNOn 𝑔)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤}))
5 fveq2 6861 . . . . . 6 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
65, 5jca 511 . . . . 5 (𝑔 = 𝐺 → ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (Vtx‘𝑔) = (Vtx‘𝐺)))
76adantl 481 . . . 4 ((𝑛 = 𝑁𝑔 = 𝐺) → ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (Vtx‘𝑔) = (Vtx‘𝐺)))
84, 7el2mpocl 8068 . . 3 (∀𝑛 ∈ ℕ0𝑔 ∈ V ((Vtx‘𝑔) ∈ V ∧ (Vtx‘𝑔) ∈ V) → (𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))))
93, 8ax-mp 5 . 2 (𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))))
10 simprl 770 . . 3 ((𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ∧ ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))) → (𝑁 ∈ ℕ0𝐺 ∈ V))
11 wspthnonp.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
1211eleq2i 2821 . . . . . . 7 (𝐴𝑉𝐴 ∈ (Vtx‘𝐺))
1311eleq2i 2821 . . . . . . 7 (𝐵𝑉𝐵 ∈ (Vtx‘𝐺))
1412, 13anbi12i 628 . . . . . 6 ((𝐴𝑉𝐵𝑉) ↔ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
1514biimpri 228 . . . . 5 ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (𝐴𝑉𝐵𝑉))
1615adantl 481 . . . 4 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) → (𝐴𝑉𝐵𝑉))
1716adantl 481 . . 3 ((𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ∧ ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))) → (𝐴𝑉𝐵𝑉))
18 wspthnon 29795 . . . . 5 (𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ↔ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊))
1918biimpi 216 . . . 4 (𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) → (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊))
2019adantr 480 . . 3 ((𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ∧ ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))) → (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊))
2110, 17, 203jca 1128 . 2 ((𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ∧ ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉) ∧ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊)))
229, 21mpdan 687 1 (𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉) ∧ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3045  {crab 3408  Vcvv 3450   class class class wbr 5110  cfv 6514  (class class class)co 7390  0cn0 12449  Vtxcvtx 28930  SPathsOncspthson 29650   WWalksNOn cwwlksnon 29764   WSPathsNOn cwwspthsnon 29766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-wwlksnon 29769  df-wspthsnon 29771
This theorem is referenced by:  wspthneq1eq2  29797  wspthsnonn0vne  29854  wspthsswwlknon  29858
  Copyright terms: Public domain W3C validator