MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspthnonp Structured version   Visualization version   GIF version

Theorem wspthnonp 29879
Description: Properties of a set being a simple path of a fixed length between two vertices as word. (Contributed by AV, 14-May-2021.) (Proof shortened by AV, 15-Mar-2022.)
Hypothesis
Ref Expression
wspthnonp.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wspthnonp (𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉) ∧ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊)))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑓,𝐺   𝑓,𝑁   𝑓,𝑉   𝑓,𝑊

Proof of Theorem wspthnonp
Dummy variables 𝑤 𝑎 𝑏 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6919 . . . . 5 (Vtx‘𝑔) ∈ V
21, 1pm3.2i 470 . . . 4 ((Vtx‘𝑔) ∈ V ∧ (Vtx‘𝑔) ∈ V)
32rgen2w 3066 . . 3 𝑛 ∈ ℕ0𝑔 ∈ V ((Vtx‘𝑔) ∈ V ∧ (Vtx‘𝑔) ∈ V)
4 df-wspthsnon 29854 . . . 4 WSPathsNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑎(𝑛 WWalksNOn 𝑔)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤}))
5 fveq2 6906 . . . . . 6 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
65, 5jca 511 . . . . 5 (𝑔 = 𝐺 → ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (Vtx‘𝑔) = (Vtx‘𝐺)))
76adantl 481 . . . 4 ((𝑛 = 𝑁𝑔 = 𝐺) → ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (Vtx‘𝑔) = (Vtx‘𝐺)))
84, 7el2mpocl 8111 . . 3 (∀𝑛 ∈ ℕ0𝑔 ∈ V ((Vtx‘𝑔) ∈ V ∧ (Vtx‘𝑔) ∈ V) → (𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))))
93, 8ax-mp 5 . 2 (𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))))
10 simprl 771 . . 3 ((𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ∧ ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))) → (𝑁 ∈ ℕ0𝐺 ∈ V))
11 wspthnonp.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
1211eleq2i 2833 . . . . . . 7 (𝐴𝑉𝐴 ∈ (Vtx‘𝐺))
1311eleq2i 2833 . . . . . . 7 (𝐵𝑉𝐵 ∈ (Vtx‘𝐺))
1412, 13anbi12i 628 . . . . . 6 ((𝐴𝑉𝐵𝑉) ↔ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
1514biimpri 228 . . . . 5 ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (𝐴𝑉𝐵𝑉))
1615adantl 481 . . . 4 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) → (𝐴𝑉𝐵𝑉))
1716adantl 481 . . 3 ((𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ∧ ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))) → (𝐴𝑉𝐵𝑉))
18 wspthnon 29878 . . . . 5 (𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ↔ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊))
1918biimpi 216 . . . 4 (𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) → (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊))
2019adantr 480 . . 3 ((𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ∧ ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))) → (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊))
2110, 17, 203jca 1129 . 2 ((𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ∧ ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉) ∧ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊)))
229, 21mpdan 687 1 (𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉) ∧ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wex 1779  wcel 2108  wral 3061  {crab 3436  Vcvv 3480   class class class wbr 5143  cfv 6561  (class class class)co 7431  0cn0 12526  Vtxcvtx 29013  SPathsOncspthson 29733   WWalksNOn cwwlksnon 29847   WSPathsNOn cwwspthsnon 29849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-wwlksnon 29852  df-wspthsnon 29854
This theorem is referenced by:  wspthneq1eq2  29880  wspthsnonn0vne  29937  wspthsswwlknon  29941
  Copyright terms: Public domain W3C validator