MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsnen2g Structured version   Visualization version   GIF version

Theorem xpsnen2g 8983
Description: A set is equinumerous to its Cartesian product with a singleton on the left. (Contributed by Stefan O'Rear, 21-Nov-2014.)
Assertion
Ref Expression
xpsnen2g ((𝐴𝑉𝐵𝑊) → ({𝐴} × 𝐵) ≈ 𝐵)

Proof of Theorem xpsnen2g
StepHypRef Expression
1 snex 5372 . . 3 {𝐴} ∈ V
2 xpcomeng 8982 . . 3 (({𝐴} ∈ V ∧ 𝐵𝑊) → ({𝐴} × 𝐵) ≈ (𝐵 × {𝐴}))
31, 2mpan 690 . 2 (𝐵𝑊 → ({𝐴} × 𝐵) ≈ (𝐵 × {𝐴}))
4 xpsneng 8975 . . 3 ((𝐵𝑊𝐴𝑉) → (𝐵 × {𝐴}) ≈ 𝐵)
54ancoms 458 . 2 ((𝐴𝑉𝐵𝑊) → (𝐵 × {𝐴}) ≈ 𝐵)
6 entr 8928 . 2 ((({𝐴} × 𝐵) ≈ (𝐵 × {𝐴}) ∧ (𝐵 × {𝐴}) ≈ 𝐵) → ({𝐴} × 𝐵) ≈ 𝐵)
73, 5, 6syl2an2 686 1 ((𝐴𝑉𝐵𝑊) → ({𝐴} × 𝐵) ≈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  Vcvv 3436  {csn 4573   class class class wbr 5089   × cxp 5612  cen 8866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-1st 7921  df-2nd 7922  df-er 8622  df-en 8870
This theorem is referenced by:  unxpwdom2  9474  undjudom  10059  endjudisj  10060  djuen  10061  dju1dif  10064  dju1p1e2  10065  djucomen  10069  djuassen  10070  xpdjuen  10071  mapdjuen  10072  djuxpdom  10077  djufi  10078  djuinf  10080  infdju1  10081  pwdjudom  10106  ackbij1lem8  10117  isfin4p1  10206  pwdjundom  10558  lgsquadlem1  27318  lgsquadlem2  27319
  Copyright terms: Public domain W3C validator