Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpsnen2g | Structured version Visualization version GIF version |
Description: A set is equinumerous to its Cartesian product with a singleton on the left. (Contributed by Stefan O'Rear, 21-Nov-2014.) |
Ref | Expression |
---|---|
xpsnen2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × 𝐵) ≈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5354 | . . 3 ⊢ {𝐴} ∈ V | |
2 | xpcomeng 8851 | . . 3 ⊢ (({𝐴} ∈ V ∧ 𝐵 ∈ 𝑊) → ({𝐴} × 𝐵) ≈ (𝐵 × {𝐴})) | |
3 | 1, 2 | mpan 687 | . 2 ⊢ (𝐵 ∈ 𝑊 → ({𝐴} × 𝐵) ≈ (𝐵 × {𝐴})) |
4 | xpsneng 8843 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝐵 × {𝐴}) ≈ 𝐵) | |
5 | 4 | ancoms 459 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 × {𝐴}) ≈ 𝐵) |
6 | entr 8792 | . 2 ⊢ ((({𝐴} × 𝐵) ≈ (𝐵 × {𝐴}) ∧ (𝐵 × {𝐴}) ≈ 𝐵) → ({𝐴} × 𝐵) ≈ 𝐵) | |
7 | 3, 5, 6 | syl2an2 683 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × 𝐵) ≈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 Vcvv 3432 {csn 4561 class class class wbr 5074 × cxp 5587 ≈ cen 8730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-1st 7831 df-2nd 7832 df-er 8498 df-en 8734 |
This theorem is referenced by: unxpwdom2 9347 undjudom 9923 endjudisj 9924 djuen 9925 dju1dif 9928 dju1p1e2 9929 djucomen 9933 djuassen 9934 xpdjuen 9935 mapdjuen 9936 djuxpdom 9941 djufi 9942 djuinf 9944 infdju1 9945 pwdjudom 9972 ackbij1lem8 9983 isfin4p1 10071 pwdjundom 10423 lgsquadlem1 26528 lgsquadlem2 26529 |
Copyright terms: Public domain | W3C validator |