![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpsnen2g | Structured version Visualization version GIF version |
Description: A set is equinumerous to its Cartesian product with a singleton on the left. (Contributed by Stefan O'Rear, 21-Nov-2014.) |
Ref | Expression |
---|---|
xpsnen2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × 𝐵) ≈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5442 | . . 3 ⊢ {𝐴} ∈ V | |
2 | xpcomeng 9103 | . . 3 ⊢ (({𝐴} ∈ V ∧ 𝐵 ∈ 𝑊) → ({𝐴} × 𝐵) ≈ (𝐵 × {𝐴})) | |
3 | 1, 2 | mpan 690 | . 2 ⊢ (𝐵 ∈ 𝑊 → ({𝐴} × 𝐵) ≈ (𝐵 × {𝐴})) |
4 | xpsneng 9095 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝐵 × {𝐴}) ≈ 𝐵) | |
5 | 4 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 × {𝐴}) ≈ 𝐵) |
6 | entr 9045 | . 2 ⊢ ((({𝐴} × 𝐵) ≈ (𝐵 × {𝐴}) ∧ (𝐵 × {𝐴}) ≈ 𝐵) → ({𝐴} × 𝐵) ≈ 𝐵) | |
7 | 3, 5, 6 | syl2an2 686 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × 𝐵) ≈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 Vcvv 3478 {csn 4631 class class class wbr 5148 × cxp 5687 ≈ cen 8981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-1st 8013 df-2nd 8014 df-er 8744 df-en 8985 |
This theorem is referenced by: unxpwdom2 9626 undjudom 10206 endjudisj 10207 djuen 10208 dju1dif 10211 dju1p1e2 10212 djucomen 10216 djuassen 10217 xpdjuen 10218 mapdjuen 10219 djuxpdom 10224 djufi 10225 djuinf 10227 infdju1 10228 pwdjudom 10253 ackbij1lem8 10264 isfin4p1 10353 pwdjundom 10705 lgsquadlem1 27439 lgsquadlem2 27440 |
Copyright terms: Public domain | W3C validator |