| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpsnen2g | Structured version Visualization version GIF version | ||
| Description: A set is equinumerous to its Cartesian product with a singleton on the left. (Contributed by Stefan O'Rear, 21-Nov-2014.) |
| Ref | Expression |
|---|---|
| xpsnen2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × 𝐵) ≈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex 5391 | . . 3 ⊢ {𝐴} ∈ V | |
| 2 | xpcomeng 9033 | . . 3 ⊢ (({𝐴} ∈ V ∧ 𝐵 ∈ 𝑊) → ({𝐴} × 𝐵) ≈ (𝐵 × {𝐴})) | |
| 3 | 1, 2 | mpan 690 | . 2 ⊢ (𝐵 ∈ 𝑊 → ({𝐴} × 𝐵) ≈ (𝐵 × {𝐴})) |
| 4 | xpsneng 9026 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝐵 × {𝐴}) ≈ 𝐵) | |
| 5 | 4 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 × {𝐴}) ≈ 𝐵) |
| 6 | entr 8977 | . 2 ⊢ ((({𝐴} × 𝐵) ≈ (𝐵 × {𝐴}) ∧ (𝐵 × {𝐴}) ≈ 𝐵) → ({𝐴} × 𝐵) ≈ 𝐵) | |
| 7 | 3, 5, 6 | syl2an2 686 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × 𝐵) ≈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3447 {csn 4589 class class class wbr 5107 × cxp 5636 ≈ cen 8915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-1st 7968 df-2nd 7969 df-er 8671 df-en 8919 |
| This theorem is referenced by: unxpwdom2 9541 undjudom 10121 endjudisj 10122 djuen 10123 dju1dif 10126 dju1p1e2 10127 djucomen 10131 djuassen 10132 xpdjuen 10133 mapdjuen 10134 djuxpdom 10139 djufi 10140 djuinf 10142 infdju1 10143 pwdjudom 10168 ackbij1lem8 10179 isfin4p1 10268 pwdjundom 10620 lgsquadlem1 27291 lgsquadlem2 27292 |
| Copyright terms: Public domain | W3C validator |