| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpsnen2g | Structured version Visualization version GIF version | ||
| Description: A set is equinumerous to its Cartesian product with a singleton on the left. (Contributed by Stefan O'Rear, 21-Nov-2014.) |
| Ref | Expression |
|---|---|
| xpsnen2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × 𝐵) ≈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex 5386 | . . 3 ⊢ {𝐴} ∈ V | |
| 2 | xpcomeng 9010 | . . 3 ⊢ (({𝐴} ∈ V ∧ 𝐵 ∈ 𝑊) → ({𝐴} × 𝐵) ≈ (𝐵 × {𝐴})) | |
| 3 | 1, 2 | mpan 690 | . 2 ⊢ (𝐵 ∈ 𝑊 → ({𝐴} × 𝐵) ≈ (𝐵 × {𝐴})) |
| 4 | xpsneng 9003 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝐵 × {𝐴}) ≈ 𝐵) | |
| 5 | 4 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 × {𝐴}) ≈ 𝐵) |
| 6 | entr 8954 | . 2 ⊢ ((({𝐴} × 𝐵) ≈ (𝐵 × {𝐴}) ∧ (𝐵 × {𝐴}) ≈ 𝐵) → ({𝐴} × 𝐵) ≈ 𝐵) | |
| 7 | 3, 5, 6 | syl2an2 686 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × 𝐵) ≈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3444 {csn 4585 class class class wbr 5102 × cxp 5629 ≈ cen 8892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-1st 7947 df-2nd 7948 df-er 8648 df-en 8896 |
| This theorem is referenced by: unxpwdom2 9517 undjudom 10097 endjudisj 10098 djuen 10099 dju1dif 10102 dju1p1e2 10103 djucomen 10107 djuassen 10108 xpdjuen 10109 mapdjuen 10110 djuxpdom 10115 djufi 10116 djuinf 10118 infdju1 10119 pwdjudom 10144 ackbij1lem8 10155 isfin4p1 10244 pwdjundom 10596 lgsquadlem1 27267 lgsquadlem2 27268 |
| Copyright terms: Public domain | W3C validator |