MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsnen2g Structured version   Visualization version   GIF version

Theorem xpsnen2g 8821
Description: A set is equinumerous to its Cartesian product with a singleton on the left. (Contributed by Stefan O'Rear, 21-Nov-2014.)
Assertion
Ref Expression
xpsnen2g ((𝐴𝑉𝐵𝑊) → ({𝐴} × 𝐵) ≈ 𝐵)

Proof of Theorem xpsnen2g
StepHypRef Expression
1 snex 5357 . . 3 {𝐴} ∈ V
2 xpcomeng 8820 . . 3 (({𝐴} ∈ V ∧ 𝐵𝑊) → ({𝐴} × 𝐵) ≈ (𝐵 × {𝐴}))
31, 2mpan 686 . 2 (𝐵𝑊 → ({𝐴} × 𝐵) ≈ (𝐵 × {𝐴}))
4 xpsneng 8813 . . 3 ((𝐵𝑊𝐴𝑉) → (𝐵 × {𝐴}) ≈ 𝐵)
54ancoms 458 . 2 ((𝐴𝑉𝐵𝑊) → (𝐵 × {𝐴}) ≈ 𝐵)
6 entr 8763 . 2 ((({𝐴} × 𝐵) ≈ (𝐵 × {𝐴}) ∧ (𝐵 × {𝐴}) ≈ 𝐵) → ({𝐴} × 𝐵) ≈ 𝐵)
73, 5, 6syl2an2 682 1 ((𝐴𝑉𝐵𝑊) → ({𝐴} × 𝐵) ≈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Vcvv 3430  {csn 4566   class class class wbr 5078   × cxp 5586  cen 8704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-int 4885  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-1st 7817  df-2nd 7818  df-er 8472  df-en 8708
This theorem is referenced by:  unxpwdom2  9308  undjudom  9907  endjudisj  9908  djuen  9909  dju1dif  9912  dju1p1e2  9913  djucomen  9917  djuassen  9918  xpdjuen  9919  mapdjuen  9920  djuxpdom  9925  djufi  9926  djuinf  9928  infdju1  9929  pwdjudom  9956  ackbij1lem8  9967  isfin4p1  10055  pwdjundom  10407  lgsquadlem1  26509  lgsquadlem2  26510
  Copyright terms: Public domain W3C validator