New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > coex | GIF version |
Description: The composition of two sets is a set. (Contributed by SF, 7-Jan-2015.) |
Ref | Expression |
---|---|
coex.1 | ⊢ A ∈ V |
coex.2 | ⊢ B ∈ V |
Ref | Expression |
---|---|
coex | ⊢ (A ∘ B) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coex.1 | . 2 ⊢ A ∈ V | |
2 | coex.2 | . 2 ⊢ B ∈ V | |
3 | coexg 4750 | . 2 ⊢ ((A ∈ V ∧ B ∈ V) → (A ∘ B) ∈ V) | |
4 | 1, 2, 3 | mp2an 653 | 1 ⊢ (A ∘ B) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1710 Vcvv 2860 ∘ ccom 4722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-opab 4624 df-br 4641 df-co 4727 |
This theorem is referenced by: 2ndex 5113 ins4ex 5800 si3ex 5807 composefn 5819 addcfnex 5825 clos1ex 5877 entr 6039 xpassen 6058 enpw1lem1 6062 enmap2lem1 6064 enmap2lem2 6065 enmap2lem5 6068 enmap1lem1 6070 enmap1lem2 6071 enmap1lem5 6074 lecex 6116 ovcelem1 6172 ceex 6175 sbthlem3 6206 nclenc 6223 lenc 6224 tcfnex 6245 csucex 6260 nnltp1clem1 6262 addccan2nclem2 6265 nmembers1lem1 6269 nncdiv3lem2 6277 nnc3n3p1 6279 spacvallem1 6282 nchoicelem11 6300 nchoicelem16 6305 nchoicelem18 6307 |
Copyright terms: Public domain | W3C validator |