NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  coex GIF version

Theorem coex 4751
Description: The composition of two sets is a set. (Contributed by SF, 7-Jan-2015.)
Hypotheses
Ref Expression
coex.1 A V
coex.2 B V
Assertion
Ref Expression
coex (A B) V

Proof of Theorem coex
StepHypRef Expression
1 coex.1 . 2 A V
2 coex.2 . 2 B V
3 coexg 4750 . 2 ((A V B V) → (A B) V)
41, 2, 3mp2an 653 1 (A B) V
Colors of variables: wff setvar class
Syntax hints:   wcel 1710  Vcvv 2860   ccom 4722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-addc 4379  df-nnc 4380  df-phi 4566  df-op 4567  df-opab 4624  df-br 4641  df-co 4727
This theorem is referenced by:  2ndex  5113  ins4ex  5800  si3ex  5807  composefn  5819  addcfnex  5825  clos1ex  5877  entr  6039  xpassen  6058  enpw1lem1  6062  enmap2lem1  6064  enmap2lem2  6065  enmap2lem5  6068  enmap1lem1  6070  enmap1lem2  6071  enmap1lem5  6074  lecex  6116  ovcelem1  6172  ceex  6175  sbthlem3  6206  nclenc  6223  lenc  6224  tcfnex  6245  csucex  6260  nnltp1clem1  6262  addccan2nclem2  6265  nmembers1lem1  6269  nncdiv3lem2  6277  nnc3n3p1  6279  spacvallem1  6282  nchoicelem11  6300  nchoicelem16  6305  nchoicelem18  6307
  Copyright terms: Public domain W3C validator