New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > imaex | GIF version |
Description: The image of a set under a set is a set. (Contributed by SF, 7-Jan-2015.) |
Ref | Expression |
---|---|
imaex.1 | ⊢ A ∈ V |
imaex.2 | ⊢ B ∈ V |
Ref | Expression |
---|---|
imaex | ⊢ (A “ B) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaex.1 | . 2 ⊢ A ∈ V | |
2 | imaex.2 | . 2 ⊢ B ∈ V | |
3 | imaexg 4747 | . 2 ⊢ ((A ∈ V ∧ B ∈ V) → (A “ B) ∈ V) | |
4 | 1, 2, 3 | mp2an 653 | 1 ⊢ (A “ B) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1710 Vcvv 2860 “ cima 4723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-br 4641 df-ima 4728 |
This theorem is referenced by: ins4ex 5800 si3ex 5807 mptexlem 5811 mpt2exlem 5812 composeex 5821 disjex 5824 addcfnex 5825 funsex 5829 crossex 5851 pw1fnex 5853 domfnex 5871 ranfnex 5872 clos1ex 5877 clos1basesuc 5883 transex 5911 refex 5912 antisymex 5913 connexex 5914 foundex 5915 extex 5916 symex 5917 mapexi 6004 enpw1lem1 6062 enmap2lem1 6064 enmap1lem1 6070 enprmaplem1 6077 enprmaplem2 6078 enprmaplem3 6079 enprmaplem5 6081 enprmaplem6 6082 mucex 6134 ovcelem1 6172 ceex 6175 ce0nn 6181 leconnnc 6219 tcfnex 6245 nclennlem1 6249 nmembers1lem1 6269 nncdiv3lem2 6277 nnc3n3p1 6279 spacvallem1 6282 nchoicelem4 6293 nchoicelem10 6299 nchoicelem11 6300 nchoicelem16 6305 nchoicelem18 6307 |
Copyright terms: Public domain | W3C validator |