![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2idlvalg | GIF version |
Description: Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
2idlval.i | ⊢ 𝐼 = (LIdeal‘𝑅) |
2idlval.o | ⊢ 𝑂 = (oppr‘𝑅) |
2idlval.j | ⊢ 𝐽 = (LIdeal‘𝑂) |
2idlval.t | ⊢ 𝑇 = (2Ideal‘𝑅) |
Ref | Expression |
---|---|
2idlvalg | ⊢ (𝑅 ∈ 𝑉 → 𝑇 = (𝐼 ∩ 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2idlval.t | . 2 ⊢ 𝑇 = (2Ideal‘𝑅) | |
2 | df-2idl 13813 | . . 3 ⊢ 2Ideal = (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟)))) | |
3 | fveq2 5534 | . . . . 5 ⊢ (𝑟 = 𝑅 → (LIdeal‘𝑟) = (LIdeal‘𝑅)) | |
4 | 2idlval.i | . . . . 5 ⊢ 𝐼 = (LIdeal‘𝑅) | |
5 | 3, 4 | eqtr4di 2240 | . . . 4 ⊢ (𝑟 = 𝑅 → (LIdeal‘𝑟) = 𝐼) |
6 | fveq2 5534 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (oppr‘𝑟) = (oppr‘𝑅)) | |
7 | 2idlval.o | . . . . . . 7 ⊢ 𝑂 = (oppr‘𝑅) | |
8 | 6, 7 | eqtr4di 2240 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (oppr‘𝑟) = 𝑂) |
9 | 8 | fveq2d 5538 | . . . . 5 ⊢ (𝑟 = 𝑅 → (LIdeal‘(oppr‘𝑟)) = (LIdeal‘𝑂)) |
10 | 2idlval.j | . . . . 5 ⊢ 𝐽 = (LIdeal‘𝑂) | |
11 | 9, 10 | eqtr4di 2240 | . . . 4 ⊢ (𝑟 = 𝑅 → (LIdeal‘(oppr‘𝑟)) = 𝐽) |
12 | 5, 11 | ineq12d 3352 | . . 3 ⊢ (𝑟 = 𝑅 → ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟))) = (𝐼 ∩ 𝐽)) |
13 | elex 2763 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
14 | lidlex 13786 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (LIdeal‘𝑅) ∈ V) | |
15 | 4, 14 | eqeltrid 2276 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → 𝐼 ∈ V) |
16 | inex1g 4154 | . . . 4 ⊢ (𝐼 ∈ V → (𝐼 ∩ 𝐽) ∈ V) | |
17 | 15, 16 | syl 14 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝐼 ∩ 𝐽) ∈ V) |
18 | 2, 12, 13, 17 | fvmptd3 5629 | . 2 ⊢ (𝑅 ∈ 𝑉 → (2Ideal‘𝑅) = (𝐼 ∩ 𝐽)) |
19 | 1, 18 | eqtrid 2234 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝑇 = (𝐼 ∩ 𝐽)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 Vcvv 2752 ∩ cin 3143 ‘cfv 5235 opprcoppr 13414 LIdealclidl 13780 2Idealc2idl 13812 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7931 ax-resscn 7932 ax-1re 7934 ax-addrcl 7937 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-ov 5898 df-oprab 5899 df-mpo 5900 df-inn 8949 df-2 9007 df-3 9008 df-4 9009 df-5 9010 df-6 9011 df-7 9012 df-8 9013 df-ndx 12514 df-slot 12515 df-base 12517 df-sets 12518 df-iress 12519 df-mulr 12600 df-sca 12602 df-vsca 12603 df-ip 12604 df-lssm 13666 df-sra 13748 df-rgmod 13749 df-lidl 13782 df-2idl 13813 |
This theorem is referenced by: 2idlelb 13817 2idllidld 13818 2idlridld 13819 2idl0 13824 2idl1 13825 qus1 13838 crng2idl 13842 |
Copyright terms: Public domain | W3C validator |