ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulsucdiv2z Unicode version

Theorem mulsucdiv2z 11925
Description: An integer multiplied with its successor divided by 2 yields an integer, i.e. an integer multiplied with its successor is even. (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
mulsucdiv2z  |-  ( N  e.  ZZ  ->  (
( N  x.  ( N  +  1 ) )  /  2 )  e.  ZZ )

Proof of Theorem mulsucdiv2z
StepHypRef Expression
1 zeo 9389 . 2  |-  ( N  e.  ZZ  ->  (
( N  /  2
)  e.  ZZ  \/  ( ( N  + 
1 )  /  2
)  e.  ZZ ) )
2 peano2z 9320 . . . . . 6  |-  ( N  e.  ZZ  ->  ( N  +  1 )  e.  ZZ )
3 zmulcl 9337 . . . . . 6  |-  ( ( ( N  /  2
)  e.  ZZ  /\  ( N  +  1
)  e.  ZZ )  ->  ( ( N  /  2 )  x.  ( N  +  1 ) )  e.  ZZ )
42, 3sylan2 286 . . . . 5  |-  ( ( ( N  /  2
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( N  / 
2 )  x.  ( N  +  1 ) )  e.  ZZ )
5 zcn 9289 . . . . . . . 8  |-  ( N  e.  ZZ  ->  N  e.  CC )
62zcnd 9407 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N  +  1 )  e.  CC )
7 2cnd 9023 . . . . . . . 8  |-  ( N  e.  ZZ  ->  2  e.  CC )
8 2ap0 9043 . . . . . . . . 9  |-  2 #  0
98a1i 9 . . . . . . . 8  |-  ( N  e.  ZZ  ->  2 #  0 )
105, 6, 7, 9div23apd 8816 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
( N  x.  ( N  +  1 ) )  /  2 )  =  ( ( N  /  2 )  x.  ( N  +  1 ) ) )
1110eleq1d 2258 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( ( N  x.  ( N  +  1
) )  /  2
)  e.  ZZ  <->  ( ( N  /  2 )  x.  ( N  +  1 ) )  e.  ZZ ) )
1211adantl 277 . . . . 5  |-  ( ( ( N  /  2
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( N  x.  ( N  + 
1 ) )  / 
2 )  e.  ZZ  <->  ( ( N  /  2
)  x.  ( N  +  1 ) )  e.  ZZ ) )
134, 12mpbird 167 . . . 4  |-  ( ( ( N  /  2
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( N  x.  ( N  +  1
) )  /  2
)  e.  ZZ )
1413ex 115 . . 3  |-  ( ( N  /  2 )  e.  ZZ  ->  ( N  e.  ZZ  ->  ( ( N  x.  ( N  +  1 ) )  /  2 )  e.  ZZ ) )
15 zmulcl 9337 . . . . . 6  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( N  x.  ( ( N  + 
1 )  /  2
) )  e.  ZZ )
1615ancoms 268 . . . . 5  |-  ( ( ( ( N  + 
1 )  /  2
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  x.  (
( N  +  1 )  /  2 ) )  e.  ZZ )
175, 6, 7, 9divassapd 8814 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
( N  x.  ( N  +  1 ) )  /  2 )  =  ( N  x.  ( ( N  + 
1 )  /  2
) ) )
1817eleq1d 2258 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( ( N  x.  ( N  +  1
) )  /  2
)  e.  ZZ  <->  ( N  x.  ( ( N  + 
1 )  /  2
) )  e.  ZZ ) )
1918adantl 277 . . . . 5  |-  ( ( ( ( N  + 
1 )  /  2
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( N  x.  ( N  + 
1 ) )  / 
2 )  e.  ZZ  <->  ( N  x.  ( ( N  +  1 )  /  2 ) )  e.  ZZ ) )
2016, 19mpbird 167 . . . 4  |-  ( ( ( ( N  + 
1 )  /  2
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( N  x.  ( N  +  1
) )  /  2
)  e.  ZZ )
2120ex 115 . . 3  |-  ( ( ( N  +  1 )  /  2 )  e.  ZZ  ->  ( N  e.  ZZ  ->  ( ( N  x.  ( N  +  1 ) )  /  2 )  e.  ZZ ) )
2214, 21jaoi 717 . 2  |-  ( ( ( N  /  2
)  e.  ZZ  \/  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( N  e.  ZZ  ->  ( ( N  x.  ( N  +  1 ) )  /  2 )  e.  ZZ ) )
231, 22mpcom 36 1  |-  ( N  e.  ZZ  ->  (
( N  x.  ( N  +  1 ) )  /  2 )  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    e. wcel 2160   class class class wbr 4018  (class class class)co 5897   0cc0 7842   1c1 7843    + caddc 7845    x. cmul 7847   # cap 8569    / cdiv 8660   2c2 9001   ZZcz 9284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-id 4311  df-po 4314  df-iso 4315  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-n0 9208  df-z 9285
This theorem is referenced by:  sqoddm1div8z  11926
  Copyright terms: Public domain W3C validator