ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2zd Unicode version

Theorem peano2zd 8871
Description: Deduction from second Peano postulate generalized to integers. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
zred.1  |-  ( ph  ->  A  e.  ZZ )
Assertion
Ref Expression
peano2zd  |-  ( ph  ->  ( A  +  1 )  e.  ZZ )

Proof of Theorem peano2zd
StepHypRef Expression
1 zred.1 . 2  |-  ( ph  ->  A  e.  ZZ )
2 peano2z 8786 . 2  |-  ( A  e.  ZZ  ->  ( A  +  1 )  e.  ZZ )
31, 2syl 14 1  |-  ( ph  ->  ( A  +  1 )  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1438  (class class class)co 5652   1c1 7351    + caddc 7353   ZZcz 8750
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-setind 4353  ax-cnex 7436  ax-resscn 7437  ax-1cn 7438  ax-1re 7439  ax-icn 7440  ax-addcl 7441  ax-addrcl 7442  ax-mulcl 7443  ax-addcom 7445  ax-addass 7447  ax-distr 7449  ax-i2m1 7450  ax-0id 7453  ax-rnegex 7454  ax-cnre 7456
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-br 3846  df-opab 3900  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-iota 4980  df-fun 5017  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-sub 7655  df-neg 7656  df-inn 8423  df-n0 8674  df-z 8751
This theorem is referenced by:  elfzp1  9486  fznatpl1  9490  fzdifsuc  9495  fseq1p1m1  9508  flqge  9689  2tnp1ge0ge0  9708  ceiqm1l  9718  addmodlteq  9805  frec2uzzd  9807  frec2uzrdg  9816  uzsinds  9848  seq3f1olemqsumkj  9927  seq3f1olemqsumk  9928  bcp1nk  10170  ibcval5  10171  hashfz  10229  resqrexlemdecn  10445  telfsumo  10860  fsumparts  10864  binomlem  10877  geo2sum  10908  cvgratnnlemseq  10920  cvgratnnlemabsle  10921  cvgratnnlemsumlt  10922  cvgratnnlemrate  10924  cvgratz  10926  mertenslemub  10928  mertenslemi1  10929  dvdsfac  11139  2tp1odd  11162  opoe  11173  zsupcllemstep  11219  prmind2  11380  hashdvds  11475
  Copyright terms: Public domain W3C validator