Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > peano2zd | Unicode version |
Description: Deduction from second Peano postulate generalized to integers. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
zred.1 |
Ref | Expression |
---|---|
peano2zd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zred.1 | . 2 | |
2 | peano2z 9223 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 (class class class)co 5841 c1 7750 caddc 7752 cz 9187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-addcom 7849 ax-addass 7851 ax-distr 7853 ax-i2m1 7854 ax-0id 7857 ax-rnegex 7858 ax-cnre 7860 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-ral 2448 df-rex 2449 df-reu 2450 df-rab 2452 df-v 2727 df-sbc 2951 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-br 3982 df-opab 4043 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-iota 5152 df-fun 5189 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-sub 8067 df-neg 8068 df-inn 8854 df-n0 9111 df-z 9188 |
This theorem is referenced by: elfzp1 10003 fznatpl1 10007 fzdifsuc 10012 fseq1p1m1 10025 flqge 10213 2tnp1ge0ge0 10232 ceiqm1l 10242 addmodlteq 10329 frec2uzzd 10331 frec2uzrdg 10340 uzsinds 10373 seq3f1olemqsumkj 10429 seq3f1olemqsumk 10430 bcp1nk 10671 bcval5 10672 hashfz 10730 resqrexlemdecn 10950 telfsumo 11403 fsumparts 11407 binomlem 11420 geo2sum 11451 cvgratnnlemseq 11463 cvgratnnlemabsle 11464 cvgratnnlemsumlt 11465 cvgratnnlemrate 11467 cvgratz 11469 mertenslemub 11471 mertenslemi1 11472 clim2prod 11476 clim2divap 11477 fprodntrivap 11521 fprodeq0 11554 dvdsfac 11794 2tp1odd 11817 opoe 11828 zsupcllemstep 11874 suprzubdc 11881 prmind2 12048 hashdvds 12149 eulerthlemrprm 12157 pcprendvds 12218 nninfdclemcl 12377 nninfdclemp1 12379 lgslem1 13501 lgsval 13505 lgsfvalg 13506 lgsval2lem 13511 lgsvalmod 13520 cvgcmp2nlemabs 13871 |
Copyright terms: Public domain | W3C validator |