ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apexp1 Unicode version

Theorem apexp1 10569
Description: Exponentiation and apartness. (Contributed by Jim Kingdon, 9-Jul-2024.)
Assertion
Ref Expression
apexp1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN )  ->  (
( A ^ N
) #  ( B ^ N )  ->  A #  B ) )

Proof of Theorem apexp1
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5822 . . . . . . 7  |-  ( w  =  1  ->  ( A ^ w )  =  ( A ^ 1 ) )
2 oveq2 5822 . . . . . . 7  |-  ( w  =  1  ->  ( B ^ w )  =  ( B ^ 1 ) )
31, 2breq12d 3974 . . . . . 6  |-  ( w  =  1  ->  (
( A ^ w
) #  ( B ^
w )  <->  ( A ^ 1 ) #  ( B ^ 1 ) ) )
43imbi1d 230 . . . . 5  |-  ( w  =  1  ->  (
( ( A ^
w ) #  ( B ^ w )  ->  A #  B )  <->  ( ( A ^ 1 ) #  ( B ^ 1 )  ->  A #  B ) ) )
54imbi2d 229 . . . 4  |-  ( w  =  1  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ w
) #  ( B ^
w )  ->  A #  B ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ 1 ) #  ( B ^
1 )  ->  A #  B ) ) ) )
6 oveq2 5822 . . . . . . 7  |-  ( w  =  k  ->  ( A ^ w )  =  ( A ^ k
) )
7 oveq2 5822 . . . . . . 7  |-  ( w  =  k  ->  ( B ^ w )  =  ( B ^ k
) )
86, 7breq12d 3974 . . . . . 6  |-  ( w  =  k  ->  (
( A ^ w
) #  ( B ^
w )  <->  ( A ^ k ) #  ( B ^ k ) ) )
98imbi1d 230 . . . . 5  |-  ( w  =  k  ->  (
( ( A ^
w ) #  ( B ^ w )  ->  A #  B )  <->  ( ( A ^ k ) #  ( B ^ k )  ->  A #  B ) ) )
109imbi2d 229 . . . 4  |-  ( w  =  k  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ w
) #  ( B ^
w )  ->  A #  B ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ k
) #  ( B ^
k )  ->  A #  B ) ) ) )
11 oveq2 5822 . . . . . . 7  |-  ( w  =  ( k  +  1 )  ->  ( A ^ w )  =  ( A ^ (
k  +  1 ) ) )
12 oveq2 5822 . . . . . . 7  |-  ( w  =  ( k  +  1 )  ->  ( B ^ w )  =  ( B ^ (
k  +  1 ) ) )
1311, 12breq12d 3974 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  (
( A ^ w
) #  ( B ^
w )  <->  ( A ^ ( k  +  1 ) ) #  ( B ^ ( k  +  1 ) ) ) )
1413imbi1d 230 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( ( A ^
w ) #  ( B ^ w )  ->  A #  B )  <->  ( ( A ^ ( k  +  1 ) ) #  ( B ^ ( k  +  1 ) )  ->  A #  B ) ) )
1514imbi2d 229 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ w
) #  ( B ^
w )  ->  A #  B ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ (
k  +  1 ) ) #  ( B ^
( k  +  1 ) )  ->  A #  B ) ) ) )
16 oveq2 5822 . . . . . . 7  |-  ( w  =  N  ->  ( A ^ w )  =  ( A ^ N
) )
17 oveq2 5822 . . . . . . 7  |-  ( w  =  N  ->  ( B ^ w )  =  ( B ^ N
) )
1816, 17breq12d 3974 . . . . . 6  |-  ( w  =  N  ->  (
( A ^ w
) #  ( B ^
w )  <->  ( A ^ N ) #  ( B ^ N ) ) )
1918imbi1d 230 . . . . 5  |-  ( w  =  N  ->  (
( ( A ^
w ) #  ( B ^ w )  ->  A #  B )  <->  ( ( A ^ N ) #  ( B ^ N )  ->  A #  B ) ) )
2019imbi2d 229 . . . 4  |-  ( w  =  N  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ w
) #  ( B ^
w )  ->  A #  B ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ N
) #  ( B ^ N )  ->  A #  B ) ) ) )
21 simpl 108 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
2221exp1d 10523 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 1 )  =  A )
23 simpr 109 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
2423exp1d 10523 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 1 )  =  B )
2522, 24breq12d 3974 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
1 ) #  ( B ^ 1 )  <->  A #  B
) )
2625biimpd 143 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
1 ) #  ( B ^ 1 )  ->  A #  B ) )
27 simpr 109 . . . . . . . 8  |-  ( ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  /\  ( A ^ k ) #  ( B ^ k ) )  ->  ( A ^ k ) #  ( B ^ k ) )
28 simpllr 524 . . . . . . . 8  |-  ( ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  /\  ( A ^ k ) #  ( B ^ k ) )  ->  ( ( A ^ k ) #  ( B ^ k )  ->  A #  B ) )
2927, 28mpd 13 . . . . . . 7  |-  ( ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  /\  ( A ^ k ) #  ( B ^ k ) )  ->  A #  B
)
30 simpr 109 . . . . . . 7  |-  ( ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  /\  A #  B )  ->  A #  B )
31 simpr 109 . . . . . . . . 9  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  ( A ^ ( k  +  1 ) ) #  ( B ^ ( k  +  1 ) ) )
3221ad3antlr 485 . . . . . . . . . 10  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  A  e.  CC )
33 nnnn0 9076 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  k  e.  NN0 )
3433ad3antrrr 484 . . . . . . . . . 10  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  k  e.  NN0 )
3532, 34expp1d 10529 . . . . . . . . 9  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  ( A ^ ( k  +  1 ) )  =  ( ( A ^
k )  x.  A
) )
3623ad3antlr 485 . . . . . . . . . 10  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  B  e.  CC )
3736, 34expp1d 10529 . . . . . . . . 9  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  ( B ^ ( k  +  1 ) )  =  ( ( B ^
k )  x.  B
) )
3831, 35, 373brtr3d 3991 . . . . . . . 8  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  (
( A ^ k
)  x.  A ) #  ( ( B ^
k )  x.  B
) )
3932, 34expcld 10528 . . . . . . . . 9  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  ( A ^ k )  e.  CC )
4036, 34expcld 10528 . . . . . . . . 9  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  ( B ^ k )  e.  CC )
41 mulext 8468 . . . . . . . . 9  |-  ( ( ( ( A ^
k )  e.  CC  /\  A  e.  CC )  /\  ( ( B ^ k )  e.  CC  /\  B  e.  CC ) )  -> 
( ( ( A ^ k )  x.  A ) #  ( ( B ^ k )  x.  B )  -> 
( ( A ^
k ) #  ( B ^ k )  \/  A #  B ) ) )
4239, 32, 40, 36, 41syl22anc 1218 . . . . . . . 8  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  (
( ( A ^
k )  x.  A
) #  ( ( B ^ k )  x.  B )  ->  (
( A ^ k
) #  ( B ^
k )  \/  A #  B ) ) )
4338, 42mpd 13 . . . . . . 7  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  (
( A ^ k
) #  ( B ^
k )  \/  A #  B ) )
4429, 30, 43mpjaodan 788 . . . . . 6  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  A #  B )
4544exp41 368 . . . . 5  |-  ( k  e.  NN  ->  (
( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ k ) #  ( B ^ k
)  ->  A #  B
)  ->  ( ( A ^ ( k  +  1 ) ) #  ( B ^ ( k  +  1 ) )  ->  A #  B ) ) ) )
4645a2d 26 . . . 4  |-  ( k  e.  NN  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ k
) #  ( B ^
k )  ->  A #  B ) )  -> 
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ (
k  +  1 ) ) #  ( B ^
( k  +  1 ) )  ->  A #  B ) ) ) )
475, 10, 15, 20, 26, 46nnind 8828 . . 3  |-  ( N  e.  NN  ->  (
( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^ N ) #  ( B ^ N )  ->  A #  B ) ) )
4847impcom 124 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  N  e.  NN )  ->  ( ( A ^ N ) #  ( B ^ N )  ->  A #  B ) )
49483impa 1177 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN )  ->  (
( A ^ N
) #  ( B ^ N )  ->  A #  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 698    /\ w3a 963    = wceq 1332    e. wcel 2125   class class class wbr 3961  (class class class)co 5814   CCcc 7709   1c1 7712    + caddc 7714    x. cmul 7716   # cap 8435   NNcn 8812   NN0cn0 9069   ^cexp 10396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-frec 6328  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-n0 9070  df-z 9147  df-uz 9419  df-seqfrec 10323  df-exp 10397
This theorem is referenced by:  logbgcd1irraplemap  13225
  Copyright terms: Public domain W3C validator