ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apexp1 Unicode version

Theorem apexp1 10900
Description: Exponentiation and apartness. (Contributed by Jim Kingdon, 9-Jul-2024.)
Assertion
Ref Expression
apexp1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN )  ->  (
( A ^ N
) #  ( B ^ N )  ->  A #  B ) )

Proof of Theorem apexp1
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5975 . . . . . . 7  |-  ( w  =  1  ->  ( A ^ w )  =  ( A ^ 1 ) )
2 oveq2 5975 . . . . . . 7  |-  ( w  =  1  ->  ( B ^ w )  =  ( B ^ 1 ) )
31, 2breq12d 4072 . . . . . 6  |-  ( w  =  1  ->  (
( A ^ w
) #  ( B ^
w )  <->  ( A ^ 1 ) #  ( B ^ 1 ) ) )
43imbi1d 231 . . . . 5  |-  ( w  =  1  ->  (
( ( A ^
w ) #  ( B ^ w )  ->  A #  B )  <->  ( ( A ^ 1 ) #  ( B ^ 1 )  ->  A #  B ) ) )
54imbi2d 230 . . . 4  |-  ( w  =  1  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ w
) #  ( B ^
w )  ->  A #  B ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ 1 ) #  ( B ^
1 )  ->  A #  B ) ) ) )
6 oveq2 5975 . . . . . . 7  |-  ( w  =  k  ->  ( A ^ w )  =  ( A ^ k
) )
7 oveq2 5975 . . . . . . 7  |-  ( w  =  k  ->  ( B ^ w )  =  ( B ^ k
) )
86, 7breq12d 4072 . . . . . 6  |-  ( w  =  k  ->  (
( A ^ w
) #  ( B ^
w )  <->  ( A ^ k ) #  ( B ^ k ) ) )
98imbi1d 231 . . . . 5  |-  ( w  =  k  ->  (
( ( A ^
w ) #  ( B ^ w )  ->  A #  B )  <->  ( ( A ^ k ) #  ( B ^ k )  ->  A #  B ) ) )
109imbi2d 230 . . . 4  |-  ( w  =  k  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ w
) #  ( B ^
w )  ->  A #  B ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ k
) #  ( B ^
k )  ->  A #  B ) ) ) )
11 oveq2 5975 . . . . . . 7  |-  ( w  =  ( k  +  1 )  ->  ( A ^ w )  =  ( A ^ (
k  +  1 ) ) )
12 oveq2 5975 . . . . . . 7  |-  ( w  =  ( k  +  1 )  ->  ( B ^ w )  =  ( B ^ (
k  +  1 ) ) )
1311, 12breq12d 4072 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  (
( A ^ w
) #  ( B ^
w )  <->  ( A ^ ( k  +  1 ) ) #  ( B ^ ( k  +  1 ) ) ) )
1413imbi1d 231 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( ( A ^
w ) #  ( B ^ w )  ->  A #  B )  <->  ( ( A ^ ( k  +  1 ) ) #  ( B ^ ( k  +  1 ) )  ->  A #  B ) ) )
1514imbi2d 230 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ w
) #  ( B ^
w )  ->  A #  B ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ (
k  +  1 ) ) #  ( B ^
( k  +  1 ) )  ->  A #  B ) ) ) )
16 oveq2 5975 . . . . . . 7  |-  ( w  =  N  ->  ( A ^ w )  =  ( A ^ N
) )
17 oveq2 5975 . . . . . . 7  |-  ( w  =  N  ->  ( B ^ w )  =  ( B ^ N
) )
1816, 17breq12d 4072 . . . . . 6  |-  ( w  =  N  ->  (
( A ^ w
) #  ( B ^
w )  <->  ( A ^ N ) #  ( B ^ N ) ) )
1918imbi1d 231 . . . . 5  |-  ( w  =  N  ->  (
( ( A ^
w ) #  ( B ^ w )  ->  A #  B )  <->  ( ( A ^ N ) #  ( B ^ N )  ->  A #  B ) ) )
2019imbi2d 230 . . . 4  |-  ( w  =  N  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ w
) #  ( B ^
w )  ->  A #  B ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ N
) #  ( B ^ N )  ->  A #  B ) ) ) )
21 simpl 109 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
2221exp1d 10850 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 1 )  =  A )
23 simpr 110 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
2423exp1d 10850 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 1 )  =  B )
2522, 24breq12d 4072 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
1 ) #  ( B ^ 1 )  <->  A #  B
) )
2625biimpd 144 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
1 ) #  ( B ^ 1 )  ->  A #  B ) )
27 simpr 110 . . . . . . . 8  |-  ( ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  /\  ( A ^ k ) #  ( B ^ k ) )  ->  ( A ^ k ) #  ( B ^ k ) )
28 simpllr 534 . . . . . . . 8  |-  ( ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  /\  ( A ^ k ) #  ( B ^ k ) )  ->  ( ( A ^ k ) #  ( B ^ k )  ->  A #  B ) )
2927, 28mpd 13 . . . . . . 7  |-  ( ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  /\  ( A ^ k ) #  ( B ^ k ) )  ->  A #  B
)
30 simpr 110 . . . . . . 7  |-  ( ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  /\  A #  B )  ->  A #  B )
31 simpr 110 . . . . . . . . 9  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  ( A ^ ( k  +  1 ) ) #  ( B ^ ( k  +  1 ) ) )
3221ad3antlr 493 . . . . . . . . . 10  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  A  e.  CC )
33 nnnn0 9337 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  k  e.  NN0 )
3433ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  k  e.  NN0 )
3532, 34expp1d 10856 . . . . . . . . 9  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  ( A ^ ( k  +  1 ) )  =  ( ( A ^
k )  x.  A
) )
3623ad3antlr 493 . . . . . . . . . 10  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  B  e.  CC )
3736, 34expp1d 10856 . . . . . . . . 9  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  ( B ^ ( k  +  1 ) )  =  ( ( B ^
k )  x.  B
) )
3831, 35, 373brtr3d 4090 . . . . . . . 8  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  (
( A ^ k
)  x.  A ) #  ( ( B ^
k )  x.  B
) )
3932, 34expcld 10855 . . . . . . . . 9  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  ( A ^ k )  e.  CC )
4036, 34expcld 10855 . . . . . . . . 9  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  ( B ^ k )  e.  CC )
41 mulext 8722 . . . . . . . . 9  |-  ( ( ( ( A ^
k )  e.  CC  /\  A  e.  CC )  /\  ( ( B ^ k )  e.  CC  /\  B  e.  CC ) )  -> 
( ( ( A ^ k )  x.  A ) #  ( ( B ^ k )  x.  B )  -> 
( ( A ^
k ) #  ( B ^ k )  \/  A #  B ) ) )
4239, 32, 40, 36, 41syl22anc 1251 . . . . . . . 8  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  (
( ( A ^
k )  x.  A
) #  ( ( B ^ k )  x.  B )  ->  (
( A ^ k
) #  ( B ^
k )  \/  A #  B ) ) )
4338, 42mpd 13 . . . . . . 7  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  (
( A ^ k
) #  ( B ^
k )  \/  A #  B ) )
4429, 30, 43mpjaodan 800 . . . . . 6  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  A #  B )
4544exp41 370 . . . . 5  |-  ( k  e.  NN  ->  (
( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ k ) #  ( B ^ k
)  ->  A #  B
)  ->  ( ( A ^ ( k  +  1 ) ) #  ( B ^ ( k  +  1 ) )  ->  A #  B ) ) ) )
4645a2d 26 . . . 4  |-  ( k  e.  NN  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ k
) #  ( B ^
k )  ->  A #  B ) )  -> 
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ (
k  +  1 ) ) #  ( B ^
( k  +  1 ) )  ->  A #  B ) ) ) )
475, 10, 15, 20, 26, 46nnind 9087 . . 3  |-  ( N  e.  NN  ->  (
( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^ N ) #  ( B ^ N )  ->  A #  B ) ) )
4847impcom 125 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  N  e.  NN )  ->  ( ( A ^ N ) #  ( B ^ N )  ->  A #  B ) )
49483impa 1197 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN )  ->  (
( A ^ N
) #  ( B ^ N )  ->  A #  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    /\ w3a 981    = wceq 1373    e. wcel 2178   class class class wbr 4059  (class class class)co 5967   CCcc 7958   1c1 7961    + caddc 7963    x. cmul 7965   # cap 8689   NNcn 9071   NN0cn0 9330   ^cexp 10720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-seqfrec 10630  df-exp 10721
This theorem is referenced by:  logbgcd1irraplemap  15556
  Copyright terms: Public domain W3C validator