ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apexp1 Unicode version

Theorem apexp1 10733
Description: Exponentiation and apartness. (Contributed by Jim Kingdon, 9-Jul-2024.)
Assertion
Ref Expression
apexp1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN )  ->  (
( A ^ N
) #  ( B ^ N )  ->  A #  B ) )

Proof of Theorem apexp1
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5905 . . . . . . 7  |-  ( w  =  1  ->  ( A ^ w )  =  ( A ^ 1 ) )
2 oveq2 5905 . . . . . . 7  |-  ( w  =  1  ->  ( B ^ w )  =  ( B ^ 1 ) )
31, 2breq12d 4031 . . . . . 6  |-  ( w  =  1  ->  (
( A ^ w
) #  ( B ^
w )  <->  ( A ^ 1 ) #  ( B ^ 1 ) ) )
43imbi1d 231 . . . . 5  |-  ( w  =  1  ->  (
( ( A ^
w ) #  ( B ^ w )  ->  A #  B )  <->  ( ( A ^ 1 ) #  ( B ^ 1 )  ->  A #  B ) ) )
54imbi2d 230 . . . 4  |-  ( w  =  1  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ w
) #  ( B ^
w )  ->  A #  B ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ 1 ) #  ( B ^
1 )  ->  A #  B ) ) ) )
6 oveq2 5905 . . . . . . 7  |-  ( w  =  k  ->  ( A ^ w )  =  ( A ^ k
) )
7 oveq2 5905 . . . . . . 7  |-  ( w  =  k  ->  ( B ^ w )  =  ( B ^ k
) )
86, 7breq12d 4031 . . . . . 6  |-  ( w  =  k  ->  (
( A ^ w
) #  ( B ^
w )  <->  ( A ^ k ) #  ( B ^ k ) ) )
98imbi1d 231 . . . . 5  |-  ( w  =  k  ->  (
( ( A ^
w ) #  ( B ^ w )  ->  A #  B )  <->  ( ( A ^ k ) #  ( B ^ k )  ->  A #  B ) ) )
109imbi2d 230 . . . 4  |-  ( w  =  k  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ w
) #  ( B ^
w )  ->  A #  B ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ k
) #  ( B ^
k )  ->  A #  B ) ) ) )
11 oveq2 5905 . . . . . . 7  |-  ( w  =  ( k  +  1 )  ->  ( A ^ w )  =  ( A ^ (
k  +  1 ) ) )
12 oveq2 5905 . . . . . . 7  |-  ( w  =  ( k  +  1 )  ->  ( B ^ w )  =  ( B ^ (
k  +  1 ) ) )
1311, 12breq12d 4031 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  (
( A ^ w
) #  ( B ^
w )  <->  ( A ^ ( k  +  1 ) ) #  ( B ^ ( k  +  1 ) ) ) )
1413imbi1d 231 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( ( A ^
w ) #  ( B ^ w )  ->  A #  B )  <->  ( ( A ^ ( k  +  1 ) ) #  ( B ^ ( k  +  1 ) )  ->  A #  B ) ) )
1514imbi2d 230 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ w
) #  ( B ^
w )  ->  A #  B ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ (
k  +  1 ) ) #  ( B ^
( k  +  1 ) )  ->  A #  B ) ) ) )
16 oveq2 5905 . . . . . . 7  |-  ( w  =  N  ->  ( A ^ w )  =  ( A ^ N
) )
17 oveq2 5905 . . . . . . 7  |-  ( w  =  N  ->  ( B ^ w )  =  ( B ^ N
) )
1816, 17breq12d 4031 . . . . . 6  |-  ( w  =  N  ->  (
( A ^ w
) #  ( B ^
w )  <->  ( A ^ N ) #  ( B ^ N ) ) )
1918imbi1d 231 . . . . 5  |-  ( w  =  N  ->  (
( ( A ^
w ) #  ( B ^ w )  ->  A #  B )  <->  ( ( A ^ N ) #  ( B ^ N )  ->  A #  B ) ) )
2019imbi2d 230 . . . 4  |-  ( w  =  N  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ w
) #  ( B ^
w )  ->  A #  B ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ N
) #  ( B ^ N )  ->  A #  B ) ) ) )
21 simpl 109 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
2221exp1d 10683 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 1 )  =  A )
23 simpr 110 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
2423exp1d 10683 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 1 )  =  B )
2522, 24breq12d 4031 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
1 ) #  ( B ^ 1 )  <->  A #  B
) )
2625biimpd 144 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
1 ) #  ( B ^ 1 )  ->  A #  B ) )
27 simpr 110 . . . . . . . 8  |-  ( ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  /\  ( A ^ k ) #  ( B ^ k ) )  ->  ( A ^ k ) #  ( B ^ k ) )
28 simpllr 534 . . . . . . . 8  |-  ( ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  /\  ( A ^ k ) #  ( B ^ k ) )  ->  ( ( A ^ k ) #  ( B ^ k )  ->  A #  B ) )
2927, 28mpd 13 . . . . . . 7  |-  ( ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  /\  ( A ^ k ) #  ( B ^ k ) )  ->  A #  B
)
30 simpr 110 . . . . . . 7  |-  ( ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  /\  A #  B )  ->  A #  B )
31 simpr 110 . . . . . . . . 9  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  ( A ^ ( k  +  1 ) ) #  ( B ^ ( k  +  1 ) ) )
3221ad3antlr 493 . . . . . . . . . 10  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  A  e.  CC )
33 nnnn0 9214 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  k  e.  NN0 )
3433ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  k  e.  NN0 )
3532, 34expp1d 10689 . . . . . . . . 9  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  ( A ^ ( k  +  1 ) )  =  ( ( A ^
k )  x.  A
) )
3623ad3antlr 493 . . . . . . . . . 10  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  B  e.  CC )
3736, 34expp1d 10689 . . . . . . . . 9  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  ( B ^ ( k  +  1 ) )  =  ( ( B ^
k )  x.  B
) )
3831, 35, 373brtr3d 4049 . . . . . . . 8  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  (
( A ^ k
)  x.  A ) #  ( ( B ^
k )  x.  B
) )
3932, 34expcld 10688 . . . . . . . . 9  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  ( A ^ k )  e.  CC )
4036, 34expcld 10688 . . . . . . . . 9  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  ( B ^ k )  e.  CC )
41 mulext 8602 . . . . . . . . 9  |-  ( ( ( ( A ^
k )  e.  CC  /\  A  e.  CC )  /\  ( ( B ^ k )  e.  CC  /\  B  e.  CC ) )  -> 
( ( ( A ^ k )  x.  A ) #  ( ( B ^ k )  x.  B )  -> 
( ( A ^
k ) #  ( B ^ k )  \/  A #  B ) ) )
4239, 32, 40, 36, 41syl22anc 1250 . . . . . . . 8  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  (
( ( A ^
k )  x.  A
) #  ( ( B ^ k )  x.  B )  ->  (
( A ^ k
) #  ( B ^
k )  \/  A #  B ) ) )
4338, 42mpd 13 . . . . . . 7  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  (
( A ^ k
) #  ( B ^
k )  \/  A #  B ) )
4429, 30, 43mpjaodan 799 . . . . . 6  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  A #  B )
4544exp41 370 . . . . 5  |-  ( k  e.  NN  ->  (
( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ k ) #  ( B ^ k
)  ->  A #  B
)  ->  ( ( A ^ ( k  +  1 ) ) #  ( B ^ ( k  +  1 ) )  ->  A #  B ) ) ) )
4645a2d 26 . . . 4  |-  ( k  e.  NN  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ k
) #  ( B ^
k )  ->  A #  B ) )  -> 
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ (
k  +  1 ) ) #  ( B ^
( k  +  1 ) )  ->  A #  B ) ) ) )
475, 10, 15, 20, 26, 46nnind 8966 . . 3  |-  ( N  e.  NN  ->  (
( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^ N ) #  ( B ^ N )  ->  A #  B ) ) )
4847impcom 125 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  N  e.  NN )  ->  ( ( A ^ N ) #  ( B ^ N )  ->  A #  B ) )
49483impa 1196 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN )  ->  (
( A ^ N
) #  ( B ^ N )  ->  A #  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2160   class class class wbr 4018  (class class class)co 5897   CCcc 7840   1c1 7843    + caddc 7845    x. cmul 7847   # cap 8569   NNcn 8950   NN0cn0 9207   ^cexp 10553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-frec 6417  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-n0 9208  df-z 9285  df-uz 9560  df-seqfrec 10479  df-exp 10554
This theorem is referenced by:  logbgcd1irraplemap  14864
  Copyright terms: Public domain W3C validator