ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apexp1 Unicode version

Theorem apexp1 10935
Description: Exponentiation and apartness. (Contributed by Jim Kingdon, 9-Jul-2024.)
Assertion
Ref Expression
apexp1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN )  ->  (
( A ^ N
) #  ( B ^ N )  ->  A #  B ) )

Proof of Theorem apexp1
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6008 . . . . . . 7  |-  ( w  =  1  ->  ( A ^ w )  =  ( A ^ 1 ) )
2 oveq2 6008 . . . . . . 7  |-  ( w  =  1  ->  ( B ^ w )  =  ( B ^ 1 ) )
31, 2breq12d 4095 . . . . . 6  |-  ( w  =  1  ->  (
( A ^ w
) #  ( B ^
w )  <->  ( A ^ 1 ) #  ( B ^ 1 ) ) )
43imbi1d 231 . . . . 5  |-  ( w  =  1  ->  (
( ( A ^
w ) #  ( B ^ w )  ->  A #  B )  <->  ( ( A ^ 1 ) #  ( B ^ 1 )  ->  A #  B ) ) )
54imbi2d 230 . . . 4  |-  ( w  =  1  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ w
) #  ( B ^
w )  ->  A #  B ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ 1 ) #  ( B ^
1 )  ->  A #  B ) ) ) )
6 oveq2 6008 . . . . . . 7  |-  ( w  =  k  ->  ( A ^ w )  =  ( A ^ k
) )
7 oveq2 6008 . . . . . . 7  |-  ( w  =  k  ->  ( B ^ w )  =  ( B ^ k
) )
86, 7breq12d 4095 . . . . . 6  |-  ( w  =  k  ->  (
( A ^ w
) #  ( B ^
w )  <->  ( A ^ k ) #  ( B ^ k ) ) )
98imbi1d 231 . . . . 5  |-  ( w  =  k  ->  (
( ( A ^
w ) #  ( B ^ w )  ->  A #  B )  <->  ( ( A ^ k ) #  ( B ^ k )  ->  A #  B ) ) )
109imbi2d 230 . . . 4  |-  ( w  =  k  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ w
) #  ( B ^
w )  ->  A #  B ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ k
) #  ( B ^
k )  ->  A #  B ) ) ) )
11 oveq2 6008 . . . . . . 7  |-  ( w  =  ( k  +  1 )  ->  ( A ^ w )  =  ( A ^ (
k  +  1 ) ) )
12 oveq2 6008 . . . . . . 7  |-  ( w  =  ( k  +  1 )  ->  ( B ^ w )  =  ( B ^ (
k  +  1 ) ) )
1311, 12breq12d 4095 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  (
( A ^ w
) #  ( B ^
w )  <->  ( A ^ ( k  +  1 ) ) #  ( B ^ ( k  +  1 ) ) ) )
1413imbi1d 231 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( ( A ^
w ) #  ( B ^ w )  ->  A #  B )  <->  ( ( A ^ ( k  +  1 ) ) #  ( B ^ ( k  +  1 ) )  ->  A #  B ) ) )
1514imbi2d 230 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ w
) #  ( B ^
w )  ->  A #  B ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ (
k  +  1 ) ) #  ( B ^
( k  +  1 ) )  ->  A #  B ) ) ) )
16 oveq2 6008 . . . . . . 7  |-  ( w  =  N  ->  ( A ^ w )  =  ( A ^ N
) )
17 oveq2 6008 . . . . . . 7  |-  ( w  =  N  ->  ( B ^ w )  =  ( B ^ N
) )
1816, 17breq12d 4095 . . . . . 6  |-  ( w  =  N  ->  (
( A ^ w
) #  ( B ^
w )  <->  ( A ^ N ) #  ( B ^ N ) ) )
1918imbi1d 231 . . . . 5  |-  ( w  =  N  ->  (
( ( A ^
w ) #  ( B ^ w )  ->  A #  B )  <->  ( ( A ^ N ) #  ( B ^ N )  ->  A #  B ) ) )
2019imbi2d 230 . . . 4  |-  ( w  =  N  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ w
) #  ( B ^
w )  ->  A #  B ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ N
) #  ( B ^ N )  ->  A #  B ) ) ) )
21 simpl 109 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
2221exp1d 10885 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 1 )  =  A )
23 simpr 110 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
2423exp1d 10885 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 1 )  =  B )
2522, 24breq12d 4095 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
1 ) #  ( B ^ 1 )  <->  A #  B
) )
2625biimpd 144 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
1 ) #  ( B ^ 1 )  ->  A #  B ) )
27 simpr 110 . . . . . . . 8  |-  ( ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  /\  ( A ^ k ) #  ( B ^ k ) )  ->  ( A ^ k ) #  ( B ^ k ) )
28 simpllr 534 . . . . . . . 8  |-  ( ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  /\  ( A ^ k ) #  ( B ^ k ) )  ->  ( ( A ^ k ) #  ( B ^ k )  ->  A #  B ) )
2927, 28mpd 13 . . . . . . 7  |-  ( ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  /\  ( A ^ k ) #  ( B ^ k ) )  ->  A #  B
)
30 simpr 110 . . . . . . 7  |-  ( ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  /\  A #  B )  ->  A #  B )
31 simpr 110 . . . . . . . . 9  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  ( A ^ ( k  +  1 ) ) #  ( B ^ ( k  +  1 ) ) )
3221ad3antlr 493 . . . . . . . . . 10  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  A  e.  CC )
33 nnnn0 9372 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  k  e.  NN0 )
3433ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  k  e.  NN0 )
3532, 34expp1d 10891 . . . . . . . . 9  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  ( A ^ ( k  +  1 ) )  =  ( ( A ^
k )  x.  A
) )
3623ad3antlr 493 . . . . . . . . . 10  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  B  e.  CC )
3736, 34expp1d 10891 . . . . . . . . 9  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  ( B ^ ( k  +  1 ) )  =  ( ( B ^
k )  x.  B
) )
3831, 35, 373brtr3d 4113 . . . . . . . 8  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  (
( A ^ k
)  x.  A ) #  ( ( B ^
k )  x.  B
) )
3932, 34expcld 10890 . . . . . . . . 9  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  ( A ^ k )  e.  CC )
4036, 34expcld 10890 . . . . . . . . 9  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  ( B ^ k )  e.  CC )
41 mulext 8757 . . . . . . . . 9  |-  ( ( ( ( A ^
k )  e.  CC  /\  A  e.  CC )  /\  ( ( B ^ k )  e.  CC  /\  B  e.  CC ) )  -> 
( ( ( A ^ k )  x.  A ) #  ( ( B ^ k )  x.  B )  -> 
( ( A ^
k ) #  ( B ^ k )  \/  A #  B ) ) )
4239, 32, 40, 36, 41syl22anc 1272 . . . . . . . 8  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  (
( ( A ^
k )  x.  A
) #  ( ( B ^ k )  x.  B )  ->  (
( A ^ k
) #  ( B ^
k )  \/  A #  B ) ) )
4338, 42mpd 13 . . . . . . 7  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  (
( A ^ k
) #  ( B ^
k )  \/  A #  B ) )
4429, 30, 43mpjaodan 803 . . . . . 6  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A ^
k ) #  ( B ^ k )  ->  A #  B ) )  /\  ( A ^ ( k  +  1 ) ) #  ( B ^ (
k  +  1 ) ) )  ->  A #  B )
4544exp41 370 . . . . 5  |-  ( k  e.  NN  ->  (
( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ k ) #  ( B ^ k
)  ->  A #  B
)  ->  ( ( A ^ ( k  +  1 ) ) #  ( B ^ ( k  +  1 ) )  ->  A #  B ) ) ) )
4645a2d 26 . . . 4  |-  ( k  e.  NN  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ k
) #  ( B ^
k )  ->  A #  B ) )  -> 
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A ^ (
k  +  1 ) ) #  ( B ^
( k  +  1 ) )  ->  A #  B ) ) ) )
475, 10, 15, 20, 26, 46nnind 9122 . . 3  |-  ( N  e.  NN  ->  (
( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^ N ) #  ( B ^ N )  ->  A #  B ) ) )
4847impcom 125 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  N  e.  NN )  ->  ( ( A ^ N ) #  ( B ^ N )  ->  A #  B ) )
49483impa 1218 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN )  ->  (
( A ^ N
) #  ( B ^ N )  ->  A #  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 713    /\ w3a 1002    = wceq 1395    e. wcel 2200   class class class wbr 4082  (class class class)co 6000   CCcc 7993   1c1 7996    + caddc 7998    x. cmul 8000   # cap 8724   NNcn 9106   NN0cn0 9365   ^cexp 10755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-seqfrec 10665  df-exp 10756
This theorem is referenced by:  logbgcd1irraplemap  15637
  Copyright terms: Public domain W3C validator