Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > apexp1 | Unicode version |
Description: Exponentiation and apartness. (Contributed by Jim Kingdon, 9-Jul-2024.) |
Ref | Expression |
---|---|
apexp1 | # # |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5873 | . . . . . . 7 | |
2 | oveq2 5873 | . . . . . . 7 | |
3 | 1, 2 | breq12d 4011 | . . . . . 6 # # |
4 | 3 | imbi1d 231 | . . . . 5 # # # # |
5 | 4 | imbi2d 230 | . . . 4 # # # # |
6 | oveq2 5873 | . . . . . . 7 | |
7 | oveq2 5873 | . . . . . . 7 | |
8 | 6, 7 | breq12d 4011 | . . . . . 6 # # |
9 | 8 | imbi1d 231 | . . . . 5 # # # # |
10 | 9 | imbi2d 230 | . . . 4 # # # # |
11 | oveq2 5873 | . . . . . . 7 | |
12 | oveq2 5873 | . . . . . . 7 | |
13 | 11, 12 | breq12d 4011 | . . . . . 6 # # |
14 | 13 | imbi1d 231 | . . . . 5 # # # # |
15 | 14 | imbi2d 230 | . . . 4 # # # # |
16 | oveq2 5873 | . . . . . . 7 | |
17 | oveq2 5873 | . . . . . . 7 | |
18 | 16, 17 | breq12d 4011 | . . . . . 6 # # |
19 | 18 | imbi1d 231 | . . . . 5 # # # # |
20 | 19 | imbi2d 230 | . . . 4 # # # # |
21 | simpl 109 | . . . . . . 7 | |
22 | 21 | exp1d 10616 | . . . . . 6 |
23 | simpr 110 | . . . . . . 7 | |
24 | 23 | exp1d 10616 | . . . . . 6 |
25 | 22, 24 | breq12d 4011 | . . . . 5 # # |
26 | 25 | biimpd 144 | . . . 4 # # |
27 | simpr 110 | . . . . . . . 8 # # # # # | |
28 | simpllr 534 | . . . . . . . 8 # # # # # # | |
29 | 27, 28 | mpd 13 | . . . . . . 7 # # # # # |
30 | simpr 110 | . . . . . . 7 # # # # # | |
31 | simpr 110 | . . . . . . . . 9 # # # # | |
32 | 21 | ad3antlr 493 | . . . . . . . . . 10 # # # |
33 | nnnn0 9154 | . . . . . . . . . . 11 | |
34 | 33 | ad3antrrr 492 | . . . . . . . . . 10 # # # |
35 | 32, 34 | expp1d 10622 | . . . . . . . . 9 # # # |
36 | 23 | ad3antlr 493 | . . . . . . . . . 10 # # # |
37 | 36, 34 | expp1d 10622 | . . . . . . . . 9 # # # |
38 | 31, 35, 37 | 3brtr3d 4029 | . . . . . . . 8 # # # # |
39 | 32, 34 | expcld 10621 | . . . . . . . . 9 # # # |
40 | 36, 34 | expcld 10621 | . . . . . . . . 9 # # # |
41 | mulext 8545 | . . . . . . . . 9 # # # | |
42 | 39, 32, 40, 36, 41 | syl22anc 1239 | . . . . . . . 8 # # # # # # |
43 | 38, 42 | mpd 13 | . . . . . . 7 # # # # # |
44 | 29, 30, 43 | mpjaodan 798 | . . . . . 6 # # # # |
45 | 44 | exp41 370 | . . . . 5 # # # # |
46 | 45 | a2d 26 | . . . 4 # # # # |
47 | 5, 10, 15, 20, 26, 46 | nnind 8906 | . . 3 # # |
48 | 47 | impcom 125 | . 2 # # |
49 | 48 | 3impa 1194 | 1 # # |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wo 708 w3a 978 wceq 1353 wcel 2146 class class class wbr 3998 (class class class)co 5865 cc 7784 c1 7787 caddc 7789 cmul 7791 # cap 8512 cn 8890 cn0 9147 cexp 10487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-pre-mulext 7904 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-po 4290 df-iso 4291 df-iord 4360 df-on 4362 df-ilim 4363 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-frec 6382 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-div 8602 df-inn 8891 df-n0 9148 df-z 9225 df-uz 9500 df-seqfrec 10414 df-exp 10488 |
This theorem is referenced by: logbgcd1irraplemap 13938 |
Copyright terms: Public domain | W3C validator |