ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lemul2a Unicode version

Theorem lemul2a 8819
Description: Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Paul Chapman, 7-Sep-2007.)
Assertion
Ref Expression
lemul2a  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <_  C )
)  /\  A  <_  B )  ->  ( C  x.  A )  <_  ( C  x.  B )
)

Proof of Theorem lemul2a
StepHypRef Expression
1 lemul1a 8818 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <_  C )
)  /\  A  <_  B )  ->  ( A  x.  C )  <_  ( B  x.  C )
)
2 recn 7947 . . . . . 6  |-  ( A  e.  RR  ->  A  e.  CC )
3 recn 7947 . . . . . 6  |-  ( C  e.  RR  ->  C  e.  CC )
4 mulcom 7943 . . . . . 6  |-  ( ( A  e.  CC  /\  C  e.  CC )  ->  ( A  x.  C
)  =  ( C  x.  A ) )
52, 3, 4syl2an 289 . . . . 5  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  x.  C
)  =  ( C  x.  A ) )
65adantrr 479 . . . 4  |-  ( ( A  e.  RR  /\  ( C  e.  RR  /\  0  <_  C )
)  ->  ( A  x.  C )  =  ( C  x.  A ) )
763adant2 1016 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <_  C ) )  -> 
( A  x.  C
)  =  ( C  x.  A ) )
87adantr 276 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <_  C )
)  /\  A  <_  B )  ->  ( A  x.  C )  =  ( C  x.  A ) )
9 recn 7947 . . . . . 6  |-  ( B  e.  RR  ->  B  e.  CC )
10 mulcom 7943 . . . . . 6  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  x.  C
)  =  ( C  x.  B ) )
119, 3, 10syl2an 289 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  x.  C
)  =  ( C  x.  B ) )
1211adantrr 479 . . . 4  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  0  <_  C )
)  ->  ( B  x.  C )  =  ( C  x.  B ) )
13123adant1 1015 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <_  C ) )  -> 
( B  x.  C
)  =  ( C  x.  B ) )
1413adantr 276 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <_  C )
)  /\  A  <_  B )  ->  ( B  x.  C )  =  ( C  x.  B ) )
151, 8, 143brtr3d 4036 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <_  C )
)  /\  A  <_  B )  ->  ( C  x.  A )  <_  ( C  x.  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4005  (class class class)co 5878   CCcc 7812   RRcr 7813   0cc0 7814    x. cmul 7819    <_ cle 7996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542
This theorem is referenced by:  lemul12b  8821  ledivp1  8863  lemul2ad  8900  facavg  10729  mulcn2  11323  cvgratnnlemnexp  11535  cvgratnnlemmn  11536  mertenslemi1  11546
  Copyright terms: Public domain W3C validator