ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isum1p Unicode version

Theorem isum1p 11803
Description: The infinite sum of a converging infinite series equals the first term plus the infinite sum of the rest of it. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isum1p.1  |-  Z  =  ( ZZ>= `  M )
isum1p.3  |-  ( ph  ->  M  e.  ZZ )
isum1p.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
isum1p.5  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
isum1p.6  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
Assertion
Ref Expression
isum1p  |-  ( ph  -> 
sum_ k  e.  Z  A  =  ( ( F `  M )  +  sum_ k  e.  (
ZZ>= `  ( M  + 
1 ) ) A ) )
Distinct variable groups:    k, F    k, M    ph, k    k, Z
Allowed substitution hint:    A( k)

Proof of Theorem isum1p
StepHypRef Expression
1 isum1p.1 . . 3  |-  Z  =  ( ZZ>= `  M )
2 eqid 2205 . . 3  |-  ( ZZ>= `  ( M  +  1
) )  =  (
ZZ>= `  ( M  + 
1 ) )
3 isum1p.3 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
4 uzid 9662 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
53, 4syl 14 . . . . 5  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
6 peano2uz 9704 . . . . 5  |-  ( M  e.  ( ZZ>= `  M
)  ->  ( M  +  1 )  e.  ( ZZ>= `  M )
)
75, 6syl 14 . . . 4  |-  ( ph  ->  ( M  +  1 )  e.  ( ZZ>= `  M ) )
87, 1eleqtrrdi 2299 . . 3  |-  ( ph  ->  ( M  +  1 )  e.  Z )
9 isum1p.4 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
10 isum1p.5 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
11 isum1p.6 . . 3  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
121, 2, 8, 9, 10, 11isumsplit 11802 . 2  |-  ( ph  -> 
sum_ k  e.  Z  A  =  ( sum_ k  e.  ( M ... ( ( M  + 
1 )  -  1 ) ) A  +  sum_ k  e.  ( ZZ>= `  ( M  +  1
) ) A ) )
133zcnd 9496 . . . . . . 7  |-  ( ph  ->  M  e.  CC )
14 ax-1cn 8018 . . . . . . 7  |-  1  e.  CC
15 pncan 8278 . . . . . . 7  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( ( M  + 
1 )  -  1 )  =  M )
1613, 14, 15sylancl 413 . . . . . 6  |-  ( ph  ->  ( ( M  + 
1 )  -  1 )  =  M )
1716oveq2d 5960 . . . . 5  |-  ( ph  ->  ( M ... (
( M  +  1 )  -  1 ) )  =  ( M ... M ) )
1817sumeq1d 11677 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( M ... ( ( M  +  1 )  -  1 ) ) A  =  sum_ k  e.  ( M ... M
) A )
19 elfzuz 10143 . . . . . . 7  |-  ( k  e.  ( M ... M )  ->  k  e.  ( ZZ>= `  M )
)
2019, 1eleqtrrdi 2299 . . . . . 6  |-  ( k  e.  ( M ... M )  ->  k  e.  Z )
2120, 9sylan2 286 . . . . 5  |-  ( (
ph  /\  k  e.  ( M ... M ) )  ->  ( F `  k )  =  A )
2221sumeq2dv 11679 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( M ... M ) ( F `  k
)  =  sum_ k  e.  ( M ... M
) A )
23 fveq2 5576 . . . . . . 7  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
2423eleq1d 2274 . . . . . 6  |-  ( k  =  M  ->  (
( F `  k
)  e.  CC  <->  ( F `  M )  e.  CC ) )
259, 10eqeltrd 2282 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
2625ralrimiva 2579 . . . . . 6  |-  ( ph  ->  A. k  e.  Z  ( F `  k )  e.  CC )
275, 1eleqtrrdi 2299 . . . . . 6  |-  ( ph  ->  M  e.  Z )
2824, 26, 27rspcdva 2882 . . . . 5  |-  ( ph  ->  ( F `  M
)  e.  CC )
2923fsum1 11723 . . . . 5  |-  ( ( M  e.  ZZ  /\  ( F `  M )  e.  CC )  ->  sum_ k  e.  ( M ... M ) ( F `  k )  =  ( F `  M ) )
303, 28, 29syl2anc 411 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( M ... M ) ( F `  k
)  =  ( F `
 M ) )
3118, 22, 303eqtr2d 2244 . . 3  |-  ( ph  -> 
sum_ k  e.  ( M ... ( ( M  +  1 )  -  1 ) ) A  =  ( F `
 M ) )
3231oveq1d 5959 . 2  |-  ( ph  ->  ( sum_ k  e.  ( M ... ( ( M  +  1 )  -  1 ) ) A  +  sum_ k  e.  ( ZZ>= `  ( M  +  1 ) ) A )  =  ( ( F `  M
)  +  sum_ k  e.  ( ZZ>= `  ( M  +  1 ) ) A ) )
3312, 32eqtrd 2238 1  |-  ( ph  -> 
sum_ k  e.  Z  A  =  ( ( F `  M )  +  sum_ k  e.  (
ZZ>= `  ( M  + 
1 ) ) A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   dom cdm 4675   ` cfv 5271  (class class class)co 5944   CCcc 7923   1c1 7926    + caddc 7928    - cmin 8243   ZZcz 9372   ZZ>=cuz 9648   ...cfz 10130    seqcseq 10592    ~~> cli 11589   sum_csu 11664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-frec 6477  df-1o 6502  df-oadd 6506  df-er 6620  df-en 6828  df-dom 6829  df-fin 6830  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fzo 10265  df-seqfrec 10593  df-exp 10684  df-ihash 10921  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-clim 11590  df-sumdc 11665
This theorem is referenced by:  isumnn0nn  11804  efsep  12002
  Copyright terms: Public domain W3C validator