ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isum1p Unicode version

Theorem isum1p 11657
Description: The infinite sum of a converging infinite series equals the first term plus the infinite sum of the rest of it. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isum1p.1  |-  Z  =  ( ZZ>= `  M )
isum1p.3  |-  ( ph  ->  M  e.  ZZ )
isum1p.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
isum1p.5  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
isum1p.6  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
Assertion
Ref Expression
isum1p  |-  ( ph  -> 
sum_ k  e.  Z  A  =  ( ( F `  M )  +  sum_ k  e.  (
ZZ>= `  ( M  + 
1 ) ) A ) )
Distinct variable groups:    k, F    k, M    ph, k    k, Z
Allowed substitution hint:    A( k)

Proof of Theorem isum1p
StepHypRef Expression
1 isum1p.1 . . 3  |-  Z  =  ( ZZ>= `  M )
2 eqid 2196 . . 3  |-  ( ZZ>= `  ( M  +  1
) )  =  (
ZZ>= `  ( M  + 
1 ) )
3 isum1p.3 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
4 uzid 9615 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
53, 4syl 14 . . . . 5  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
6 peano2uz 9657 . . . . 5  |-  ( M  e.  ( ZZ>= `  M
)  ->  ( M  +  1 )  e.  ( ZZ>= `  M )
)
75, 6syl 14 . . . 4  |-  ( ph  ->  ( M  +  1 )  e.  ( ZZ>= `  M ) )
87, 1eleqtrrdi 2290 . . 3  |-  ( ph  ->  ( M  +  1 )  e.  Z )
9 isum1p.4 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
10 isum1p.5 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
11 isum1p.6 . . 3  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
121, 2, 8, 9, 10, 11isumsplit 11656 . 2  |-  ( ph  -> 
sum_ k  e.  Z  A  =  ( sum_ k  e.  ( M ... ( ( M  + 
1 )  -  1 ) ) A  +  sum_ k  e.  ( ZZ>= `  ( M  +  1
) ) A ) )
133zcnd 9449 . . . . . . 7  |-  ( ph  ->  M  e.  CC )
14 ax-1cn 7972 . . . . . . 7  |-  1  e.  CC
15 pncan 8232 . . . . . . 7  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( ( M  + 
1 )  -  1 )  =  M )
1613, 14, 15sylancl 413 . . . . . 6  |-  ( ph  ->  ( ( M  + 
1 )  -  1 )  =  M )
1716oveq2d 5938 . . . . 5  |-  ( ph  ->  ( M ... (
( M  +  1 )  -  1 ) )  =  ( M ... M ) )
1817sumeq1d 11531 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( M ... ( ( M  +  1 )  -  1 ) ) A  =  sum_ k  e.  ( M ... M
) A )
19 elfzuz 10096 . . . . . . 7  |-  ( k  e.  ( M ... M )  ->  k  e.  ( ZZ>= `  M )
)
2019, 1eleqtrrdi 2290 . . . . . 6  |-  ( k  e.  ( M ... M )  ->  k  e.  Z )
2120, 9sylan2 286 . . . . 5  |-  ( (
ph  /\  k  e.  ( M ... M ) )  ->  ( F `  k )  =  A )
2221sumeq2dv 11533 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( M ... M ) ( F `  k
)  =  sum_ k  e.  ( M ... M
) A )
23 fveq2 5558 . . . . . . 7  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
2423eleq1d 2265 . . . . . 6  |-  ( k  =  M  ->  (
( F `  k
)  e.  CC  <->  ( F `  M )  e.  CC ) )
259, 10eqeltrd 2273 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
2625ralrimiva 2570 . . . . . 6  |-  ( ph  ->  A. k  e.  Z  ( F `  k )  e.  CC )
275, 1eleqtrrdi 2290 . . . . . 6  |-  ( ph  ->  M  e.  Z )
2824, 26, 27rspcdva 2873 . . . . 5  |-  ( ph  ->  ( F `  M
)  e.  CC )
2923fsum1 11577 . . . . 5  |-  ( ( M  e.  ZZ  /\  ( F `  M )  e.  CC )  ->  sum_ k  e.  ( M ... M ) ( F `  k )  =  ( F `  M ) )
303, 28, 29syl2anc 411 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( M ... M ) ( F `  k
)  =  ( F `
 M ) )
3118, 22, 303eqtr2d 2235 . . 3  |-  ( ph  -> 
sum_ k  e.  ( M ... ( ( M  +  1 )  -  1 ) ) A  =  ( F `
 M ) )
3231oveq1d 5937 . 2  |-  ( ph  ->  ( sum_ k  e.  ( M ... ( ( M  +  1 )  -  1 ) ) A  +  sum_ k  e.  ( ZZ>= `  ( M  +  1 ) ) A )  =  ( ( F `  M
)  +  sum_ k  e.  ( ZZ>= `  ( M  +  1 ) ) A ) )
3312, 32eqtrd 2229 1  |-  ( ph  -> 
sum_ k  e.  Z  A  =  ( ( F `  M )  +  sum_ k  e.  (
ZZ>= `  ( M  + 
1 ) ) A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   dom cdm 4663   ` cfv 5258  (class class class)co 5922   CCcc 7877   1c1 7880    + caddc 7882    - cmin 8197   ZZcz 9326   ZZ>=cuz 9601   ...cfz 10083    seqcseq 10539    ~~> cli 11443   sum_csu 11518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519
This theorem is referenced by:  isumnn0nn  11658  efsep  11856
  Copyright terms: Public domain W3C validator