ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcos Unicode version

Theorem addcos 12257
Description: Sum of cosines. (Contributed by Paul Chapman, 12-Oct-2007.)
Assertion
Ref Expression
addcos  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  A
)  +  ( cos `  B ) )  =  ( 2  x.  (
( cos `  (
( A  +  B
)  /  2 ) )  x.  ( cos `  ( ( A  -  B )  /  2
) ) ) ) )

Proof of Theorem addcos
StepHypRef Expression
1 coscl 12218 . . 3  |-  ( A  e.  CC  ->  ( cos `  A )  e.  CC )
2 coscl 12218 . . 3  |-  ( B  e.  CC  ->  ( cos `  B )  e.  CC )
3 addcom 8283 . . 3  |-  ( ( ( cos `  A
)  e.  CC  /\  ( cos `  B )  e.  CC )  -> 
( ( cos `  A
)  +  ( cos `  B ) )  =  ( ( cos `  B
)  +  ( cos `  A ) ) )
41, 2, 3syl2an 289 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  A
)  +  ( cos `  B ) )  =  ( ( cos `  B
)  +  ( cos `  A ) ) )
5 halfaddsub 9345 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A  +  B )  /  2 )  +  ( ( A  -  B )  /  2
) )  =  A  /\  ( ( ( A  +  B )  /  2 )  -  ( ( A  -  B )  /  2
) )  =  B ) )
65simprd 114 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B )  / 
2 )  -  (
( A  -  B
)  /  2 ) )  =  B )
76fveq2d 5631 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  (
( ( A  +  B )  /  2
)  -  ( ( A  -  B )  /  2 ) ) )  =  ( cos `  B ) )
85simpld 112 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B )  / 
2 )  +  ( ( A  -  B
)  /  2 ) )  =  A )
98fveq2d 5631 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  (
( ( A  +  B )  /  2
)  +  ( ( A  -  B )  /  2 ) ) )  =  ( cos `  A ) )
107, 9oveq12d 6019 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  (
( ( A  +  B )  /  2
)  -  ( ( A  -  B )  /  2 ) ) )  +  ( cos `  ( ( ( A  +  B )  / 
2 )  +  ( ( A  -  B
)  /  2 ) ) ) )  =  ( ( cos `  B
)  +  ( cos `  A ) ) )
11 halfaddsubcl 9344 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B )  / 
2 )  e.  CC  /\  ( ( A  -  B )  /  2
)  e.  CC ) )
12 coscl 12218 . . . . . 6  |-  ( ( ( A  +  B
)  /  2 )  e.  CC  ->  ( cos `  ( ( A  +  B )  / 
2 ) )  e.  CC )
13 coscl 12218 . . . . . 6  |-  ( ( ( A  -  B
)  /  2 )  e.  CC  ->  ( cos `  ( ( A  -  B )  / 
2 ) )  e.  CC )
14 mulcl 8126 . . . . . 6  |-  ( ( ( cos `  (
( A  +  B
)  /  2 ) )  e.  CC  /\  ( cos `  ( ( A  -  B )  /  2 ) )  e.  CC )  -> 
( ( cos `  (
( A  +  B
)  /  2 ) )  x.  ( cos `  ( ( A  -  B )  /  2
) ) )  e.  CC )
1512, 13, 14syl2an 289 . . . . 5  |-  ( ( ( ( A  +  B )  /  2
)  e.  CC  /\  ( ( A  -  B )  /  2
)  e.  CC )  ->  ( ( cos `  ( ( A  +  B )  /  2
) )  x.  ( cos `  ( ( A  -  B )  / 
2 ) ) )  e.  CC )
1611, 15syl 14 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  (
( A  +  B
)  /  2 ) )  x.  ( cos `  ( ( A  -  B )  /  2
) ) )  e.  CC )
17 sincl 12217 . . . . . 6  |-  ( ( ( A  +  B
)  /  2 )  e.  CC  ->  ( sin `  ( ( A  +  B )  / 
2 ) )  e.  CC )
18 sincl 12217 . . . . . 6  |-  ( ( ( A  -  B
)  /  2 )  e.  CC  ->  ( sin `  ( ( A  -  B )  / 
2 ) )  e.  CC )
19 mulcl 8126 . . . . . 6  |-  ( ( ( sin `  (
( A  +  B
)  /  2 ) )  e.  CC  /\  ( sin `  ( ( A  -  B )  /  2 ) )  e.  CC )  -> 
( ( sin `  (
( A  +  B
)  /  2 ) )  x.  ( sin `  ( ( A  -  B )  /  2
) ) )  e.  CC )
2017, 18, 19syl2an 289 . . . . 5  |-  ( ( ( ( A  +  B )  /  2
)  e.  CC  /\  ( ( A  -  B )  /  2
)  e.  CC )  ->  ( ( sin `  ( ( A  +  B )  /  2
) )  x.  ( sin `  ( ( A  -  B )  / 
2 ) ) )  e.  CC )
2111, 20syl 14 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( sin `  (
( A  +  B
)  /  2 ) )  x.  ( sin `  ( ( A  -  B )  /  2
) ) )  e.  CC )
2216, 21, 16ppncand 8497 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( cos `  ( ( A  +  B )  /  2 ) )  x.  ( cos `  (
( A  -  B
)  /  2 ) ) )  +  ( ( sin `  (
( A  +  B
)  /  2 ) )  x.  ( sin `  ( ( A  -  B )  /  2
) ) ) )  +  ( ( ( cos `  ( ( A  +  B )  /  2 ) )  x.  ( cos `  (
( A  -  B
)  /  2 ) ) )  -  (
( sin `  (
( A  +  B
)  /  2 ) )  x.  ( sin `  ( ( A  -  B )  /  2
) ) ) ) )  =  ( ( ( cos `  (
( A  +  B
)  /  2 ) )  x.  ( cos `  ( ( A  -  B )  /  2
) ) )  +  ( ( cos `  (
( A  +  B
)  /  2 ) )  x.  ( cos `  ( ( A  -  B )  /  2
) ) ) ) )
23 cossub 12252 . . . . 5  |-  ( ( ( ( A  +  B )  /  2
)  e.  CC  /\  ( ( A  -  B )  /  2
)  e.  CC )  ->  ( cos `  (
( ( A  +  B )  /  2
)  -  ( ( A  -  B )  /  2 ) ) )  =  ( ( ( cos `  (
( A  +  B
)  /  2 ) )  x.  ( cos `  ( ( A  -  B )  /  2
) ) )  +  ( ( sin `  (
( A  +  B
)  /  2 ) )  x.  ( sin `  ( ( A  -  B )  /  2
) ) ) ) )
24 cosadd 12248 . . . . 5  |-  ( ( ( ( A  +  B )  /  2
)  e.  CC  /\  ( ( A  -  B )  /  2
)  e.  CC )  ->  ( cos `  (
( ( A  +  B )  /  2
)  +  ( ( A  -  B )  /  2 ) ) )  =  ( ( ( cos `  (
( A  +  B
)  /  2 ) )  x.  ( cos `  ( ( A  -  B )  /  2
) ) )  -  ( ( sin `  (
( A  +  B
)  /  2 ) )  x.  ( sin `  ( ( A  -  B )  /  2
) ) ) ) )
2523, 24oveq12d 6019 . . . 4  |-  ( ( ( ( A  +  B )  /  2
)  e.  CC  /\  ( ( A  -  B )  /  2
)  e.  CC )  ->  ( ( cos `  ( ( ( A  +  B )  / 
2 )  -  (
( A  -  B
)  /  2 ) ) )  +  ( cos `  ( ( ( A  +  B
)  /  2 )  +  ( ( A  -  B )  / 
2 ) ) ) )  =  ( ( ( ( cos `  (
( A  +  B
)  /  2 ) )  x.  ( cos `  ( ( A  -  B )  /  2
) ) )  +  ( ( sin `  (
( A  +  B
)  /  2 ) )  x.  ( sin `  ( ( A  -  B )  /  2
) ) ) )  +  ( ( ( cos `  ( ( A  +  B )  /  2 ) )  x.  ( cos `  (
( A  -  B
)  /  2 ) ) )  -  (
( sin `  (
( A  +  B
)  /  2 ) )  x.  ( sin `  ( ( A  -  B )  /  2
) ) ) ) ) )
2611, 25syl 14 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  (
( ( A  +  B )  /  2
)  -  ( ( A  -  B )  /  2 ) ) )  +  ( cos `  ( ( ( A  +  B )  / 
2 )  +  ( ( A  -  B
)  /  2 ) ) ) )  =  ( ( ( ( cos `  ( ( A  +  B )  /  2 ) )  x.  ( cos `  (
( A  -  B
)  /  2 ) ) )  +  ( ( sin `  (
( A  +  B
)  /  2 ) )  x.  ( sin `  ( ( A  -  B )  /  2
) ) ) )  +  ( ( ( cos `  ( ( A  +  B )  /  2 ) )  x.  ( cos `  (
( A  -  B
)  /  2 ) ) )  -  (
( sin `  (
( A  +  B
)  /  2 ) )  x.  ( sin `  ( ( A  -  B )  /  2
) ) ) ) ) )
27162timesd 9354 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
( cos `  (
( A  +  B
)  /  2 ) )  x.  ( cos `  ( ( A  -  B )  /  2
) ) ) )  =  ( ( ( cos `  ( ( A  +  B )  /  2 ) )  x.  ( cos `  (
( A  -  B
)  /  2 ) ) )  +  ( ( cos `  (
( A  +  B
)  /  2 ) )  x.  ( cos `  ( ( A  -  B )  /  2
) ) ) ) )
2822, 26, 273eqtr4d 2272 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  (
( ( A  +  B )  /  2
)  -  ( ( A  -  B )  /  2 ) ) )  +  ( cos `  ( ( ( A  +  B )  / 
2 )  +  ( ( A  -  B
)  /  2 ) ) ) )  =  ( 2  x.  (
( cos `  (
( A  +  B
)  /  2 ) )  x.  ( cos `  ( ( A  -  B )  /  2
) ) ) ) )
294, 10, 283eqtr2d 2268 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  A
)  +  ( cos `  B ) )  =  ( 2  x.  (
( cos `  (
( A  +  B
)  /  2 ) )  x.  ( cos `  ( ( A  -  B )  /  2
) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   ` cfv 5318  (class class class)co 6001   CCcc 7997    + caddc 8002    x. cmul 8004    - cmin 8317    / cdiv 8819   2c2 9161   sincsin 12155   cosccos 12156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-disj 4060  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-frec 6537  df-1o 6562  df-oadd 6566  df-er 6680  df-en 6888  df-dom 6889  df-fin 6890  df-sup 7151  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-ico 10090  df-fz 10205  df-fzo 10339  df-seqfrec 10670  df-exp 10761  df-fac 10948  df-bc 10970  df-ihash 10998  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-clim 11790  df-sumdc 11865  df-ef 12159  df-sin 12161  df-cos 12162
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator