| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elbl | GIF version | ||
| Description: Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| Ref | Expression |
|---|---|
| elbl | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) < 𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | blval 15057 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅}) | |
| 2 | 1 | eleq2d 2299 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ 𝐴 ∈ {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})) |
| 3 | oveq2 6008 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑃𝐷𝑥) = (𝑃𝐷𝐴)) | |
| 4 | 3 | breq1d 4092 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑃𝐷𝑥) < 𝑅 ↔ (𝑃𝐷𝐴) < 𝑅)) |
| 5 | 4 | elrab 2959 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅} ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) < 𝑅)) |
| 6 | 2, 5 | bitrdi 196 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) < 𝑅))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 {crab 2512 class class class wbr 4082 ‘cfv 5317 (class class class)co 6000 ℝ*cxr 8176 < clt 8177 ∞Metcxmet 14494 ballcbl 14496 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-map 6795 df-pnf 8179 df-mnf 8180 df-xr 8181 df-psmet 14501 df-xmet 14502 df-bl 14504 |
| This theorem is referenced by: elbl2 15061 xblpnf 15067 bldisj 15069 blgt0 15070 xblss2 15073 blhalf 15076 xblcntr 15082 xblm 15085 blininf 15092 blss 15096 blres 15102 xmetxpbl 15176 metcnp 15180 cnbl0 15202 bl2ioo 15218 cnopnap 15279 |
| Copyright terms: Public domain | W3C validator |