| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elbl | GIF version | ||
| Description: Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| Ref | Expression |
|---|---|
| elbl | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) < 𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | blval 14946 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅}) | |
| 2 | 1 | eleq2d 2276 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ 𝐴 ∈ {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})) |
| 3 | oveq2 5970 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑃𝐷𝑥) = (𝑃𝐷𝐴)) | |
| 4 | 3 | breq1d 4064 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑃𝐷𝑥) < 𝑅 ↔ (𝑃𝐷𝐴) < 𝑅)) |
| 5 | 4 | elrab 2933 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅} ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) < 𝑅)) |
| 6 | 2, 5 | bitrdi 196 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) < 𝑅))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 {crab 2489 class class class wbr 4054 ‘cfv 5285 (class class class)co 5962 ℝ*cxr 8136 < clt 8137 ∞Metcxmet 14383 ballcbl 14385 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-map 6755 df-pnf 8139 df-mnf 8140 df-xr 8141 df-psmet 14390 df-xmet 14391 df-bl 14393 |
| This theorem is referenced by: elbl2 14950 xblpnf 14956 bldisj 14958 blgt0 14959 xblss2 14962 blhalf 14965 xblcntr 14971 xblm 14974 blininf 14981 blss 14985 blres 14991 xmetxpbl 15065 metcnp 15069 cnbl0 15091 bl2ioo 15107 cnopnap 15168 |
| Copyright terms: Public domain | W3C validator |