| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elbl | GIF version | ||
| Description: Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| Ref | Expression |
|---|---|
| elbl | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) < 𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | blval 14803 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅}) | |
| 2 | 1 | eleq2d 2274 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ 𝐴 ∈ {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})) |
| 3 | oveq2 5951 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑃𝐷𝑥) = (𝑃𝐷𝐴)) | |
| 4 | 3 | breq1d 4053 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑃𝐷𝑥) < 𝑅 ↔ (𝑃𝐷𝐴) < 𝑅)) |
| 5 | 4 | elrab 2928 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅} ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) < 𝑅)) |
| 6 | 2, 5 | bitrdi 196 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) < 𝑅))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 {crab 2487 class class class wbr 4043 ‘cfv 5270 (class class class)co 5943 ℝ*cxr 8105 < clt 8106 ∞Metcxmet 14240 ballcbl 14242 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-map 6736 df-pnf 8108 df-mnf 8109 df-xr 8110 df-psmet 14247 df-xmet 14248 df-bl 14250 |
| This theorem is referenced by: elbl2 14807 xblpnf 14813 bldisj 14815 blgt0 14816 xblss2 14819 blhalf 14822 xblcntr 14828 xblm 14831 blininf 14838 blss 14842 blres 14848 xmetxpbl 14922 metcnp 14926 cnbl0 14948 bl2ioo 14964 cnopnap 15025 |
| Copyright terms: Public domain | W3C validator |