![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elbl | GIF version |
Description: Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
elbl | β’ ((π· β (βMetβπ) β§ π β π β§ π β β*) β (π΄ β (π(ballβπ·)π ) β (π΄ β π β§ (ππ·π΄) < π ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | blval 13892 | . . 3 β’ ((π· β (βMetβπ) β§ π β π β§ π β β*) β (π(ballβπ·)π ) = {π₯ β π β£ (ππ·π₯) < π }) | |
2 | 1 | eleq2d 2247 | . 2 β’ ((π· β (βMetβπ) β§ π β π β§ π β β*) β (π΄ β (π(ballβπ·)π ) β π΄ β {π₯ β π β£ (ππ·π₯) < π })) |
3 | oveq2 5883 | . . . 4 β’ (π₯ = π΄ β (ππ·π₯) = (ππ·π΄)) | |
4 | 3 | breq1d 4014 | . . 3 β’ (π₯ = π΄ β ((ππ·π₯) < π β (ππ·π΄) < π )) |
5 | 4 | elrab 2894 | . 2 β’ (π΄ β {π₯ β π β£ (ππ·π₯) < π } β (π΄ β π β§ (ππ·π΄) < π )) |
6 | 2, 5 | bitrdi 196 | 1 β’ ((π· β (βMetβπ) β§ π β π β§ π β β*) β (π΄ β (π(ballβπ·)π ) β (π΄ β π β§ (ππ·π΄) < π ))) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β wb 105 β§ w3a 978 = wceq 1353 β wcel 2148 {crab 2459 class class class wbr 4004 βcfv 5217 (class class class)co 5875 β*cxr 7991 < clt 7992 βMetcxmet 13443 ballcbl 13445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-cnex 7902 ax-resscn 7903 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-fv 5225 df-ov 5878 df-oprab 5879 df-mpo 5880 df-1st 6141 df-2nd 6142 df-map 6650 df-pnf 7994 df-mnf 7995 df-xr 7996 df-psmet 13450 df-xmet 13451 df-bl 13453 |
This theorem is referenced by: elbl2 13896 xblpnf 13902 bldisj 13904 blgt0 13905 xblss2 13908 blhalf 13911 xblcntr 13917 xblm 13920 blininf 13927 blss 13931 blres 13937 xmetxpbl 14011 metcnp 14015 cnbl0 14037 bl2ioo 14045 cnopnap 14097 |
Copyright terms: Public domain | W3C validator |