ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluzdc GIF version

Theorem eluzdc 9627
Description: Membership of an integer in an upper set of integers is decidable. (Contributed by Jim Kingdon, 18-Apr-2020.)
Assertion
Ref Expression
eluzdc ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 ∈ (ℤ𝑀))

Proof of Theorem eluzdc
StepHypRef Expression
1 zlelttric 9315 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑁 < 𝑀))
2 eluz 9558 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))
32biimprd 158 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑁 ∈ (ℤ𝑀)))
4 zltnle 9316 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 < 𝑀 ↔ ¬ 𝑀𝑁))
54ancoms 268 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ ¬ 𝑀𝑁))
62notbid 668 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑁 ∈ (ℤ𝑀) ↔ ¬ 𝑀𝑁))
76biimprd 158 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑀𝑁 → ¬ 𝑁 ∈ (ℤ𝑀)))
85, 7sylbid 150 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 → ¬ 𝑁 ∈ (ℤ𝑀)))
93, 8orim12d 787 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝑁𝑁 < 𝑀) → (𝑁 ∈ (ℤ𝑀) ∨ ¬ 𝑁 ∈ (ℤ𝑀))))
10 df-dc 836 . . 3 (DECID 𝑁 ∈ (ℤ𝑀) ↔ (𝑁 ∈ (ℤ𝑀) ∨ ¬ 𝑁 ∈ (ℤ𝑀)))
119, 10imbitrrdi 162 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝑁𝑁 < 𝑀) → DECID 𝑁 ∈ (ℤ𝑀)))
121, 11mpd 13 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 ∈ (ℤ𝑀))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  wcel 2159   class class class wbr 4017  cfv 5230   < clt 8009  cle 8010  cz 9270  cuz 9545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-sep 4135  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-setind 4550  ax-cnex 7919  ax-resscn 7920  ax-1cn 7921  ax-1re 7922  ax-icn 7923  ax-addcl 7924  ax-addrcl 7925  ax-mulcl 7926  ax-addcom 7928  ax-addass 7930  ax-distr 7932  ax-i2m1 7933  ax-0lt1 7934  ax-0id 7936  ax-rnegex 7937  ax-cnre 7939  ax-pre-ltirr 7940  ax-pre-ltwlin 7941  ax-pre-lttrn 7942  ax-pre-ltadd 7944
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-nel 2455  df-ral 2472  df-rex 2473  df-reu 2474  df-rab 2476  df-v 2753  df-sbc 2977  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-int 3859  df-br 4018  df-opab 4079  df-mpt 4080  df-id 4307  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-iota 5192  df-fun 5232  df-fv 5238  df-riota 5846  df-ov 5893  df-oprab 5894  df-mpo 5895  df-pnf 8011  df-mnf 8012  df-xr 8013  df-ltxr 8014  df-le 8015  df-sub 8147  df-neg 8148  df-inn 8937  df-n0 9194  df-z 9271  df-uz 9546
This theorem is referenced by:  elnn0dc  9628  elnndc  9629  fzneuz  10118  sumdc  11383  summodclem2a  11406  zsumdc  11409  zproddc  11604  nninfdclemcl  12466  nninfdclemp1  12468
  Copyright terms: Public domain W3C validator