ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ex-ceil Unicode version

Theorem ex-ceil 15862
Description: Example for df-ceil 10451. (Contributed by AV, 4-Sep-2021.)
Assertion
Ref Expression
ex-ceil  |-  ( ( `  ( 3  /  2
) )  =  2  /\  ( `  -u (
3  /  2 ) )  =  -u 1
)

Proof of Theorem ex-ceil
StepHypRef Expression
1 ex-fl 15861 . 2  |-  ( ( |_ `  ( 3  /  2 ) )  =  1  /\  ( |_ `  -u ( 3  / 
2 ) )  = 
-u 2 )
2 3z 9436 . . . . . . 7  |-  3  e.  ZZ
3 2nn 9233 . . . . . . 7  |-  2  e.  NN
4 znq 9780 . . . . . . 7  |-  ( ( 3  e.  ZZ  /\  2  e.  NN )  ->  ( 3  /  2
)  e.  QQ )
52, 3, 4mp2an 426 . . . . . 6  |-  ( 3  /  2 )  e.  QQ
6 qnegcl 9792 . . . . . 6  |-  ( ( 3  /  2 )  e.  QQ  ->  -u (
3  /  2 )  e.  QQ )
75, 6ax-mp 5 . . . . 5  |-  -u (
3  /  2 )  e.  QQ
8 ceilqval 10488 . . . . 5  |-  ( -u ( 3  /  2
)  e.  QQ  ->  ( `  -u ( 3  / 
2 ) )  = 
-u ( |_ `  -u -u ( 3  /  2
) ) )
97, 8ax-mp 5 . . . 4  |-  ( `  -u (
3  /  2 ) )  =  -u ( |_ `  -u -u ( 3  / 
2 ) )
10 qcn 9790 . . . . . . . . . . 11  |-  ( ( 3  /  2 )  e.  QQ  ->  (
3  /  2 )  e.  CC )
115, 10ax-mp 5 . . . . . . . . . 10  |-  ( 3  /  2 )  e.  CC
1211negnegi 8377 . . . . . . . . 9  |-  -u -u (
3  /  2 )  =  ( 3  / 
2 )
1312eqcomi 2211 . . . . . . . 8  |-  ( 3  /  2 )  = 
-u -u ( 3  / 
2 )
1413fveq2i 5602 . . . . . . 7  |-  ( |_
`  ( 3  / 
2 ) )  =  ( |_ `  -u -u (
3  /  2 ) )
1514eqeq1i 2215 . . . . . 6  |-  ( ( |_ `  ( 3  /  2 ) )  =  1  <->  ( |_ `  -u -u ( 3  / 
2 ) )  =  1 )
1615biimpi 120 . . . . 5  |-  ( ( |_ `  ( 3  /  2 ) )  =  1  ->  ( |_ `  -u -u ( 3  / 
2 ) )  =  1 )
1716negeqd 8302 . . . 4  |-  ( ( |_ `  ( 3  /  2 ) )  =  1  ->  -u ( |_ `  -u -u ( 3  / 
2 ) )  = 
-u 1 )
189, 17eqtrid 2252 . . 3  |-  ( ( |_ `  ( 3  /  2 ) )  =  1  ->  ( `  -u ( 3  /  2
) )  =  -u
1 )
19 ceilqval 10488 . . . . 5  |-  ( ( 3  /  2 )  e.  QQ  ->  ( `  ( 3  /  2
) )  =  -u ( |_ `  -u (
3  /  2 ) ) )
205, 19ax-mp 5 . . . 4  |-  ( `  (
3  /  2 ) )  =  -u ( |_ `  -u ( 3  / 
2 ) )
21 negeq 8300 . . . . 5  |-  ( ( |_ `  -u (
3  /  2 ) )  =  -u 2  -> 
-u ( |_ `  -u ( 3  /  2
) )  =  -u -u 2 )
22 2cn 9142 . . . . . 6  |-  2  e.  CC
2322negnegi 8377 . . . . 5  |-  -u -u 2  =  2
2421, 23eqtrdi 2256 . . . 4  |-  ( ( |_ `  -u (
3  /  2 ) )  =  -u 2  -> 
-u ( |_ `  -u ( 3  /  2
) )  =  2 )
2520, 24eqtrid 2252 . . 3  |-  ( ( |_ `  -u (
3  /  2 ) )  =  -u 2  ->  ( `  ( 3  /  2 ) )  =  2 )
2618, 25anim12ci 339 . 2  |-  ( ( ( |_ `  (
3  /  2 ) )  =  1  /\  ( |_ `  -u (
3  /  2 ) )  =  -u 2
)  ->  ( ( `  ( 3  /  2
) )  =  2  /\  ( `  -u (
3  /  2 ) )  =  -u 1
) )
271, 26ax-mp 5 1  |-  ( ( `  ( 3  /  2
) )  =  2  /\  ( `  -u (
3  /  2 ) )  =  -u 1
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373    e. wcel 2178   ` cfv 5290  (class class class)co 5967   CCcc 7958   1c1 7961   -ucneg 8279    / cdiv 8780   NNcn 9071   2c2 9122   3c3 9123   ZZcz 9407   QQcq 9775   |_cfl 10448  ⌈cceil 10449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-po 4361  df-iso 4362  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-q 9776  df-rp 9811  df-fl 10450  df-ceil 10451
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator