ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ex-ceil Unicode version

Theorem ex-ceil 15458
Description: Example for df-ceil 10380. (Contributed by AV, 4-Sep-2021.)
Assertion
Ref Expression
ex-ceil  |-  ( ( `  ( 3  /  2
) )  =  2  /\  ( `  -u (
3  /  2 ) )  =  -u 1
)

Proof of Theorem ex-ceil
StepHypRef Expression
1 ex-fl 15457 . 2  |-  ( ( |_ `  ( 3  /  2 ) )  =  1  /\  ( |_ `  -u ( 3  / 
2 ) )  = 
-u 2 )
2 3z 9374 . . . . . . 7  |-  3  e.  ZZ
3 2nn 9171 . . . . . . 7  |-  2  e.  NN
4 znq 9717 . . . . . . 7  |-  ( ( 3  e.  ZZ  /\  2  e.  NN )  ->  ( 3  /  2
)  e.  QQ )
52, 3, 4mp2an 426 . . . . . 6  |-  ( 3  /  2 )  e.  QQ
6 qnegcl 9729 . . . . . 6  |-  ( ( 3  /  2 )  e.  QQ  ->  -u (
3  /  2 )  e.  QQ )
75, 6ax-mp 5 . . . . 5  |-  -u (
3  /  2 )  e.  QQ
8 ceilqval 10417 . . . . 5  |-  ( -u ( 3  /  2
)  e.  QQ  ->  ( `  -u ( 3  / 
2 ) )  = 
-u ( |_ `  -u -u ( 3  /  2
) ) )
97, 8ax-mp 5 . . . 4  |-  ( `  -u (
3  /  2 ) )  =  -u ( |_ `  -u -u ( 3  / 
2 ) )
10 qcn 9727 . . . . . . . . . . 11  |-  ( ( 3  /  2 )  e.  QQ  ->  (
3  /  2 )  e.  CC )
115, 10ax-mp 5 . . . . . . . . . 10  |-  ( 3  /  2 )  e.  CC
1211negnegi 8315 . . . . . . . . 9  |-  -u -u (
3  /  2 )  =  ( 3  / 
2 )
1312eqcomi 2200 . . . . . . . 8  |-  ( 3  /  2 )  = 
-u -u ( 3  / 
2 )
1413fveq2i 5564 . . . . . . 7  |-  ( |_
`  ( 3  / 
2 ) )  =  ( |_ `  -u -u (
3  /  2 ) )
1514eqeq1i 2204 . . . . . 6  |-  ( ( |_ `  ( 3  /  2 ) )  =  1  <->  ( |_ `  -u -u ( 3  / 
2 ) )  =  1 )
1615biimpi 120 . . . . 5  |-  ( ( |_ `  ( 3  /  2 ) )  =  1  ->  ( |_ `  -u -u ( 3  / 
2 ) )  =  1 )
1716negeqd 8240 . . . 4  |-  ( ( |_ `  ( 3  /  2 ) )  =  1  ->  -u ( |_ `  -u -u ( 3  / 
2 ) )  = 
-u 1 )
189, 17eqtrid 2241 . . 3  |-  ( ( |_ `  ( 3  /  2 ) )  =  1  ->  ( `  -u ( 3  /  2
) )  =  -u
1 )
19 ceilqval 10417 . . . . 5  |-  ( ( 3  /  2 )  e.  QQ  ->  ( `  ( 3  /  2
) )  =  -u ( |_ `  -u (
3  /  2 ) ) )
205, 19ax-mp 5 . . . 4  |-  ( `  (
3  /  2 ) )  =  -u ( |_ `  -u ( 3  / 
2 ) )
21 negeq 8238 . . . . 5  |-  ( ( |_ `  -u (
3  /  2 ) )  =  -u 2  -> 
-u ( |_ `  -u ( 3  /  2
) )  =  -u -u 2 )
22 2cn 9080 . . . . . 6  |-  2  e.  CC
2322negnegi 8315 . . . . 5  |-  -u -u 2  =  2
2421, 23eqtrdi 2245 . . . 4  |-  ( ( |_ `  -u (
3  /  2 ) )  =  -u 2  -> 
-u ( |_ `  -u ( 3  /  2
) )  =  2 )
2520, 24eqtrid 2241 . . 3  |-  ( ( |_ `  -u (
3  /  2 ) )  =  -u 2  ->  ( `  ( 3  /  2 ) )  =  2 )
2618, 25anim12ci 339 . 2  |-  ( ( ( |_ `  (
3  /  2 ) )  =  1  /\  ( |_ `  -u (
3  /  2 ) )  =  -u 2
)  ->  ( ( `  ( 3  /  2
) )  =  2  /\  ( `  -u (
3  /  2 ) )  =  -u 1
) )
271, 26ax-mp 5 1  |-  ( ( `  ( 3  /  2
) )  =  2  /\  ( `  -u (
3  /  2 ) )  =  -u 1
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364    e. wcel 2167   ` cfv 5259  (class class class)co 5925   CCcc 7896   1c1 7899   -ucneg 8217    / cdiv 8718   NNcn 9009   2c2 9060   3c3 9061   ZZcz 9345   QQcq 9712   |_cfl 10377  ⌈cceil 10378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-q 9713  df-rp 9748  df-fl 10379  df-ceil 10380
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator