ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ex-ceil Unicode version

Theorem ex-ceil 15595
Description: Example for df-ceil 10412. (Contributed by AV, 4-Sep-2021.)
Assertion
Ref Expression
ex-ceil  |-  ( ( `  ( 3  /  2
) )  =  2  /\  ( `  -u (
3  /  2 ) )  =  -u 1
)

Proof of Theorem ex-ceil
StepHypRef Expression
1 ex-fl 15594 . 2  |-  ( ( |_ `  ( 3  /  2 ) )  =  1  /\  ( |_ `  -u ( 3  / 
2 ) )  = 
-u 2 )
2 3z 9400 . . . . . . 7  |-  3  e.  ZZ
3 2nn 9197 . . . . . . 7  |-  2  e.  NN
4 znq 9744 . . . . . . 7  |-  ( ( 3  e.  ZZ  /\  2  e.  NN )  ->  ( 3  /  2
)  e.  QQ )
52, 3, 4mp2an 426 . . . . . 6  |-  ( 3  /  2 )  e.  QQ
6 qnegcl 9756 . . . . . 6  |-  ( ( 3  /  2 )  e.  QQ  ->  -u (
3  /  2 )  e.  QQ )
75, 6ax-mp 5 . . . . 5  |-  -u (
3  /  2 )  e.  QQ
8 ceilqval 10449 . . . . 5  |-  ( -u ( 3  /  2
)  e.  QQ  ->  ( `  -u ( 3  / 
2 ) )  = 
-u ( |_ `  -u -u ( 3  /  2
) ) )
97, 8ax-mp 5 . . . 4  |-  ( `  -u (
3  /  2 ) )  =  -u ( |_ `  -u -u ( 3  / 
2 ) )
10 qcn 9754 . . . . . . . . . . 11  |-  ( ( 3  /  2 )  e.  QQ  ->  (
3  /  2 )  e.  CC )
115, 10ax-mp 5 . . . . . . . . . 10  |-  ( 3  /  2 )  e.  CC
1211negnegi 8341 . . . . . . . . 9  |-  -u -u (
3  /  2 )  =  ( 3  / 
2 )
1312eqcomi 2208 . . . . . . . 8  |-  ( 3  /  2 )  = 
-u -u ( 3  / 
2 )
1413fveq2i 5578 . . . . . . 7  |-  ( |_
`  ( 3  / 
2 ) )  =  ( |_ `  -u -u (
3  /  2 ) )
1514eqeq1i 2212 . . . . . 6  |-  ( ( |_ `  ( 3  /  2 ) )  =  1  <->  ( |_ `  -u -u ( 3  / 
2 ) )  =  1 )
1615biimpi 120 . . . . 5  |-  ( ( |_ `  ( 3  /  2 ) )  =  1  ->  ( |_ `  -u -u ( 3  / 
2 ) )  =  1 )
1716negeqd 8266 . . . 4  |-  ( ( |_ `  ( 3  /  2 ) )  =  1  ->  -u ( |_ `  -u -u ( 3  / 
2 ) )  = 
-u 1 )
189, 17eqtrid 2249 . . 3  |-  ( ( |_ `  ( 3  /  2 ) )  =  1  ->  ( `  -u ( 3  /  2
) )  =  -u
1 )
19 ceilqval 10449 . . . . 5  |-  ( ( 3  /  2 )  e.  QQ  ->  ( `  ( 3  /  2
) )  =  -u ( |_ `  -u (
3  /  2 ) ) )
205, 19ax-mp 5 . . . 4  |-  ( `  (
3  /  2 ) )  =  -u ( |_ `  -u ( 3  / 
2 ) )
21 negeq 8264 . . . . 5  |-  ( ( |_ `  -u (
3  /  2 ) )  =  -u 2  -> 
-u ( |_ `  -u ( 3  /  2
) )  =  -u -u 2 )
22 2cn 9106 . . . . . 6  |-  2  e.  CC
2322negnegi 8341 . . . . 5  |-  -u -u 2  =  2
2421, 23eqtrdi 2253 . . . 4  |-  ( ( |_ `  -u (
3  /  2 ) )  =  -u 2  -> 
-u ( |_ `  -u ( 3  /  2
) )  =  2 )
2520, 24eqtrid 2249 . . 3  |-  ( ( |_ `  -u (
3  /  2 ) )  =  -u 2  ->  ( `  ( 3  /  2 ) )  =  2 )
2618, 25anim12ci 339 . 2  |-  ( ( ( |_ `  (
3  /  2 ) )  =  1  /\  ( |_ `  -u (
3  /  2 ) )  =  -u 2
)  ->  ( ( `  ( 3  /  2
) )  =  2  /\  ( `  -u (
3  /  2 ) )  =  -u 1
) )
271, 26ax-mp 5 1  |-  ( ( `  ( 3  /  2
) )  =  2  /\  ( `  -u (
3  /  2 ) )  =  -u 1
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1372    e. wcel 2175   ` cfv 5270  (class class class)co 5943   CCcc 7922   1c1 7925   -ucneg 8243    / cdiv 8744   NNcn 9035   2c2 9086   3c3 9087   ZZcz 9371   QQcq 9739   |_cfl 10409  ⌈cceil 10410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-po 4342  df-iso 4343  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-q 9740  df-rp 9775  df-fl 10411  df-ceil 10412
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator