ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmopp Unicode version

Theorem rhmopp 13672
Description: A ring homomorphism is also a ring homomorphism for the opposite rings. (Contributed by Thierry Arnoux, 27-Oct-2017.)
Assertion
Ref Expression
rhmopp  |-  ( F  e.  ( R RingHom  S
)  ->  F  e.  ( (oppr
`  R ) RingHom  (oppr `  S
) ) )

Proof of Theorem rhmopp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . 2  |-  ( Base `  (oppr
`  R ) )  =  ( Base `  (oppr `  R
) )
2 eqid 2193 . 2  |-  ( 1r
`  (oppr
`  R ) )  =  ( 1r `  (oppr `  R ) )
3 eqid 2193 . 2  |-  ( 1r
`  (oppr
`  S ) )  =  ( 1r `  (oppr `  S ) )
4 eqid 2193 . 2  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
5 eqid 2193 . 2  |-  ( .r
`  (oppr
`  S ) )  =  ( .r `  (oppr `  S ) )
6 rhmrcl1 13651 . . 3  |-  ( F  e.  ( R RingHom  S
)  ->  R  e.  Ring )
7 eqid 2193 . . . . 5  |-  (oppr `  R
)  =  (oppr `  R
)
87opprringbg 13576 . . . 4  |-  ( R  e.  Ring  ->  ( R  e.  Ring  <->  (oppr
`  R )  e. 
Ring ) )
96, 8syl 14 . . 3  |-  ( F  e.  ( R RingHom  S
)  ->  ( R  e.  Ring  <->  (oppr
`  R )  e. 
Ring ) )
106, 9mpbid 147 . 2  |-  ( F  e.  ( R RingHom  S
)  ->  (oppr
`  R )  e. 
Ring )
11 rhmrcl2 13652 . . 3  |-  ( F  e.  ( R RingHom  S
)  ->  S  e.  Ring )
12 eqid 2193 . . . . 5  |-  (oppr `  S
)  =  (oppr `  S
)
1312opprringbg 13576 . . . 4  |-  ( S  e.  Ring  ->  ( S  e.  Ring  <->  (oppr
`  S )  e. 
Ring ) )
1411, 13syl 14 . . 3  |-  ( F  e.  ( R RingHom  S
)  ->  ( S  e.  Ring  <->  (oppr
`  S )  e. 
Ring ) )
1511, 14mpbid 147 . 2  |-  ( F  e.  ( R RingHom  S
)  ->  (oppr
`  S )  e. 
Ring )
16 eqid 2193 . . . 4  |-  ( 1r
`  R )  =  ( 1r `  R
)
17 eqid 2193 . . . 4  |-  ( 1r
`  S )  =  ( 1r `  S
)
1816, 17rhm1 13663 . . 3  |-  ( F  e.  ( R RingHom  S
)  ->  ( F `  ( 1r `  R
) )  =  ( 1r `  S ) )
197, 16oppr1g 13578 . . . . . 6  |-  ( R  e.  Ring  ->  ( 1r
`  R )  =  ( 1r `  (oppr `  R
) ) )
206, 19syl 14 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  ( 1r `  R )  =  ( 1r `  (oppr `  R
) ) )
2120eqcomd 2199 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  ( 1r `  (oppr
`  R ) )  =  ( 1r `  R ) )
2221fveq2d 5558 . . 3  |-  ( F  e.  ( R RingHom  S
)  ->  ( F `  ( 1r `  (oppr `  R
) ) )  =  ( F `  ( 1r `  R ) ) )
2312, 17oppr1g 13578 . . . . 5  |-  ( S  e.  Ring  ->  ( 1r
`  S )  =  ( 1r `  (oppr `  S
) ) )
2411, 23syl 14 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  ( 1r `  S )  =  ( 1r `  (oppr `  S
) ) )
2524eqcomd 2199 . . 3  |-  ( F  e.  ( R RingHom  S
)  ->  ( 1r `  (oppr
`  S ) )  =  ( 1r `  S ) )
2618, 22, 253eqtr4d 2236 . 2  |-  ( F  e.  ( R RingHom  S
)  ->  ( F `  ( 1r `  (oppr `  R
) ) )  =  ( 1r `  (oppr `  S
) ) )
27 simpl 109 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  F  e.  ( R RingHom  S )
)
28 simprr 531 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  y  e.  ( Base `  (oppr `  R
) ) )
29 eqid 2193 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
307, 29opprbasg 13571 . . . . . . 7  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  (oppr
`  R ) ) )
316, 30syl 14 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  ( Base `  R )  =  (
Base `  (oppr
`  R ) ) )
3227, 31syl 14 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  ( Base `  R )  =  ( Base `  (oppr `  R
) ) )
3328, 32eleqtrrd 2273 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  y  e.  ( Base `  R
) )
34 simprl 529 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  x  e.  ( Base `  (oppr `  R
) ) )
3534, 32eleqtrrd 2273 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  x  e.  ( Base `  R
) )
36 eqid 2193 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
37 eqid 2193 . . . . 5  |-  ( .r
`  S )  =  ( .r `  S
)
3829, 36, 37rhmmul 13660 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  y  e.  ( Base `  R
)  /\  x  e.  ( Base `  R )
)  ->  ( F `  ( y ( .r
`  R ) x ) )  =  ( ( F `  y
) ( .r `  S ) ( F `
 x ) ) )
3927, 33, 35, 38syl3anc 1249 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  ( F `  ( y
( .r `  R
) x ) )  =  ( ( F `
 y ) ( .r `  S ) ( F `  x
) ) )
4027, 6syl 14 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  R  e.  Ring )
4129, 36, 7, 4opprmulg 13567 . . . . 5  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  (oppr `  R
) )  /\  y  e.  ( Base `  (oppr `  R
) ) )  -> 
( x ( .r
`  (oppr
`  R ) ) y )  =  ( y ( .r `  R ) x ) )
4240, 34, 28, 41syl3anc 1249 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  (
x ( .r `  (oppr `  R ) ) y )  =  ( y ( .r `  R
) x ) )
4342fveq2d 5558 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  ( F `  ( x
( .r `  (oppr `  R
) ) y ) )  =  ( F `
 ( y ( .r `  R ) x ) ) )
4427, 11syl 14 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  S  e.  Ring )
45 eqid 2193 . . . . . . 7  |-  ( Base `  S )  =  (
Base `  S )
4629, 45rhmf 13659 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  F :
( Base `  R ) --> ( Base `  S )
)
4727, 46syl 14 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  F : ( Base `  R
) --> ( Base `  S
) )
4847, 35ffvelcdmd 5694 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  ( F `  x )  e.  ( Base `  S
) )
4947, 33ffvelcdmd 5694 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  ( F `  y )  e.  ( Base `  S
) )
5045, 37, 12, 5opprmulg 13567 . . . 4  |-  ( ( S  e.  Ring  /\  ( F `  x )  e.  ( Base `  S
)  /\  ( F `  y )  e.  (
Base `  S )
)  ->  ( ( F `  x )
( .r `  (oppr `  S
) ) ( F `
 y ) )  =  ( ( F `
 y ) ( .r `  S ) ( F `  x
) ) )
5144, 48, 49, 50syl3anc 1249 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  (
( F `  x
) ( .r `  (oppr `  S ) ) ( F `  y ) )  =  ( ( F `  y ) ( .r `  S
) ( F `  x ) ) )
5239, 43, 513eqtr4d 2236 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  ( F `  ( x
( .r `  (oppr `  R
) ) y ) )  =  ( ( F `  x ) ( .r `  (oppr `  S
) ) ( F `
 y ) ) )
5310ringgrpd 13501 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  (oppr
`  R )  e. 
Grp )
5415ringgrpd 13501 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  (oppr
`  S )  e. 
Grp )
55 rhmghm 13658 . . . . . . . . . 10  |-  ( F  e.  ( R RingHom  S
)  ->  F  e.  ( R  GrpHom  S ) )
5655ad2antrr 488 . . . . . . . . 9  |-  ( ( ( F  e.  ( R RingHom  S )  /\  x  e.  ( Base `  R
) )  /\  y  e.  ( Base `  R
) )  ->  F  e.  ( R  GrpHom  S ) )
57 simplr 528 . . . . . . . . 9  |-  ( ( ( F  e.  ( R RingHom  S )  /\  x  e.  ( Base `  R
) )  /\  y  e.  ( Base `  R
) )  ->  x  e.  ( Base `  R
) )
58 simpr 110 . . . . . . . . 9  |-  ( ( ( F  e.  ( R RingHom  S )  /\  x  e.  ( Base `  R
) )  /\  y  e.  ( Base `  R
) )  ->  y  e.  ( Base `  R
) )
59 eqid 2193 . . . . . . . . . 10  |-  ( +g  `  R )  =  ( +g  `  R )
60 eqid 2193 . . . . . . . . . 10  |-  ( +g  `  S )  =  ( +g  `  S )
6129, 59, 60ghmlin 13318 . . . . . . . . 9  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( F `  ( x ( +g  `  R ) y ) )  =  ( ( F `  x ) ( +g  `  S
) ( F `  y ) ) )
6256, 57, 58, 61syl3anc 1249 . . . . . . . 8  |-  ( ( ( F  e.  ( R RingHom  S )  /\  x  e.  ( Base `  R
) )  /\  y  e.  ( Base `  R
) )  ->  ( F `  ( x
( +g  `  R ) y ) )  =  ( ( F `  x ) ( +g  `  S ) ( F `
 y ) ) )
6362ralrimiva 2567 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  x  e.  ( Base `  R
) )  ->  A. y  e.  ( Base `  R
) ( F `  ( x ( +g  `  R ) y ) )  =  ( ( F `  x ) ( +g  `  S
) ( F `  y ) ) )
6463ralrimiva 2567 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) ( F `  ( x ( +g  `  R ) y ) )  =  ( ( F `  x ) ( +g  `  S
) ( F `  y ) ) )
6546, 64jca 306 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  ( F : ( Base `  R
) --> ( Base `  S
)  /\  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) ( F `  ( x ( +g  `  R ) y ) )  =  ( ( F `  x ) ( +g  `  S
) ( F `  y ) ) ) )
6653, 54, 65jca31 309 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  ( (
(oppr `  R )  e.  Grp  /\  (oppr
`  S )  e. 
Grp )  /\  ( F : ( Base `  R
) --> ( Base `  S
)  /\  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) ( F `  ( x ( +g  `  R ) y ) )  =  ( ( F `  x ) ( +g  `  S
) ( F `  y ) ) ) ) )
6712, 45opprbasg 13571 . . . . . . . 8  |-  ( S  e.  Ring  ->  ( Base `  S )  =  (
Base `  (oppr
`  S ) ) )
6811, 67syl 14 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  ( Base `  S )  =  (
Base `  (oppr
`  S ) ) )
6931, 68feq23d 5399 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  ( F : ( Base `  R
) --> ( Base `  S
)  <->  F : ( Base `  (oppr
`  R ) ) --> ( Base `  (oppr `  S
) ) ) )
707, 59oppraddg 13572 . . . . . . . . . . . 12  |-  ( R  e.  Ring  ->  ( +g  `  R )  =  ( +g  `  (oppr `  R
) ) )
716, 70syl 14 . . . . . . . . . . 11  |-  ( F  e.  ( R RingHom  S
)  ->  ( +g  `  R )  =  ( +g  `  (oppr `  R
) ) )
7271oveqd 5935 . . . . . . . . . 10  |-  ( F  e.  ( R RingHom  S
)  ->  ( x
( +g  `  R ) y )  =  ( x ( +g  `  (oppr `  R
) ) y ) )
7372fveq2d 5558 . . . . . . . . 9  |-  ( F  e.  ( R RingHom  S
)  ->  ( F `  ( x ( +g  `  R ) y ) )  =  ( F `
 ( x ( +g  `  (oppr `  R
) ) y ) ) )
7412, 60oppraddg 13572 . . . . . . . . . . 11  |-  ( S  e.  Ring  ->  ( +g  `  S )  =  ( +g  `  (oppr `  S
) ) )
7511, 74syl 14 . . . . . . . . . 10  |-  ( F  e.  ( R RingHom  S
)  ->  ( +g  `  S )  =  ( +g  `  (oppr `  S
) ) )
7675oveqd 5935 . . . . . . . . 9  |-  ( F  e.  ( R RingHom  S
)  ->  ( ( F `  x )
( +g  `  S ) ( F `  y
) )  =  ( ( F `  x
) ( +g  `  (oppr `  S
) ) ( F `
 y ) ) )
7773, 76eqeq12d 2208 . . . . . . . 8  |-  ( F  e.  ( R RingHom  S
)  ->  ( ( F `  ( x
( +g  `  R ) y ) )  =  ( ( F `  x ) ( +g  `  S ) ( F `
 y ) )  <-> 
( F `  (
x ( +g  `  (oppr `  R
) ) y ) )  =  ( ( F `  x ) ( +g  `  (oppr `  S
) ) ( F `
 y ) ) ) )
7831, 77raleqbidv 2706 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  ( A. y  e.  ( Base `  R ) ( F `
 ( x ( +g  `  R ) y ) )  =  ( ( F `  x ) ( +g  `  S ) ( F `
 y ) )  <->  A. y  e.  ( Base `  (oppr
`  R ) ) ( F `  (
x ( +g  `  (oppr `  R
) ) y ) )  =  ( ( F `  x ) ( +g  `  (oppr `  S
) ) ( F `
 y ) ) ) )
7931, 78raleqbidv 2706 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  ( A. x  e.  ( Base `  R ) A. y  e.  ( Base `  R
) ( F `  ( x ( +g  `  R ) y ) )  =  ( ( F `  x ) ( +g  `  S
) ( F `  y ) )  <->  A. x  e.  ( Base `  (oppr `  R
) ) A. y  e.  ( Base `  (oppr `  R
) ) ( F `
 ( x ( +g  `  (oppr `  R
) ) y ) )  =  ( ( F `  x ) ( +g  `  (oppr `  S
) ) ( F `
 y ) ) ) )
8069, 79anbi12d 473 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  ( ( F : ( Base `  R
) --> ( Base `  S
)  /\  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) ( F `  ( x ( +g  `  R ) y ) )  =  ( ( F `  x ) ( +g  `  S
) ( F `  y ) ) )  <-> 
( F : (
Base `  (oppr
`  R ) ) --> ( Base `  (oppr `  S
) )  /\  A. x  e.  ( Base `  (oppr
`  R ) ) A. y  e.  (
Base `  (oppr
`  R ) ) ( F `  (
x ( +g  `  (oppr `  R
) ) y ) )  =  ( ( F `  x ) ( +g  `  (oppr `  S
) ) ( F `
 y ) ) ) ) )
8180anbi2d 464 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  ( (
( (oppr
`  R )  e. 
Grp  /\  (oppr
`  S )  e. 
Grp )  /\  ( F : ( Base `  R
) --> ( Base `  S
)  /\  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) ( F `  ( x ( +g  `  R ) y ) )  =  ( ( F `  x ) ( +g  `  S
) ( F `  y ) ) ) )  <->  ( ( (oppr `  R )  e.  Grp  /\  (oppr
`  S )  e. 
Grp )  /\  ( F : ( Base `  (oppr `  R
) ) --> ( Base `  (oppr
`  S ) )  /\  A. x  e.  ( Base `  (oppr `  R
) ) A. y  e.  ( Base `  (oppr `  R
) ) ( F `
 ( x ( +g  `  (oppr `  R
) ) y ) )  =  ( ( F `  x ) ( +g  `  (oppr `  S
) ) ( F `
 y ) ) ) ) ) )
8266, 81mpbid 147 . . 3  |-  ( F  e.  ( R RingHom  S
)  ->  ( (
(oppr `  R )  e.  Grp  /\  (oppr
`  S )  e. 
Grp )  /\  ( F : ( Base `  (oppr `  R
) ) --> ( Base `  (oppr
`  S ) )  /\  A. x  e.  ( Base `  (oppr `  R
) ) A. y  e.  ( Base `  (oppr `  R
) ) ( F `
 ( x ( +g  `  (oppr `  R
) ) y ) )  =  ( ( F `  x ) ( +g  `  (oppr `  S
) ) ( F `
 y ) ) ) ) )
83 eqid 2193 . . . 4  |-  ( Base `  (oppr
`  S ) )  =  ( Base `  (oppr `  S
) )
84 eqid 2193 . . . 4  |-  ( +g  `  (oppr
`  R ) )  =  ( +g  `  (oppr `  R
) )
85 eqid 2193 . . . 4  |-  ( +g  `  (oppr
`  S ) )  =  ( +g  `  (oppr `  S
) )
861, 83, 84, 85isghm 13313 . . 3  |-  ( F  e.  ( (oppr `  R
)  GrpHom  (oppr
`  S ) )  <-> 
( ( (oppr `  R
)  e.  Grp  /\  (oppr `  S )  e.  Grp )  /\  ( F :
( Base `  (oppr
`  R ) ) --> ( Base `  (oppr `  S
) )  /\  A. x  e.  ( Base `  (oppr
`  R ) ) A. y  e.  (
Base `  (oppr
`  R ) ) ( F `  (
x ( +g  `  (oppr `  R
) ) y ) )  =  ( ( F `  x ) ( +g  `  (oppr `  S
) ) ( F `
 y ) ) ) ) )
8782, 86sylibr 134 . 2  |-  ( F  e.  ( R RingHom  S
)  ->  F  e.  ( (oppr
`  R )  GrpHom  (oppr `  S ) ) )
881, 2, 3, 4, 5, 10, 15, 26, 52, 87isrhm2d 13661 1  |-  ( F  e.  ( R RingHom  S
)  ->  F  e.  ( (oppr
`  R ) RingHom  (oppr `  S
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   -->wf 5250   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   .rcmulr 12696   Grpcgrp 13072    GrpHom cghm 13310   1rcur 13455   Ringcrg 13492  opprcoppr 13563   RingHom crh 13646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-tpos 6298  df-map 6704  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-mhm 13031  df-grp 13075  df-ghm 13311  df-mgp 13417  df-ur 13456  df-ring 13494  df-oppr 13564  df-rhm 13648
This theorem is referenced by:  elrhmunit  13673
  Copyright terms: Public domain W3C validator