ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmopp Unicode version

Theorem rhmopp 13675
Description: A ring homomorphism is also a ring homomorphism for the opposite rings. (Contributed by Thierry Arnoux, 27-Oct-2017.)
Assertion
Ref Expression
rhmopp  |-  ( F  e.  ( R RingHom  S
)  ->  F  e.  ( (oppr
`  R ) RingHom  (oppr `  S
) ) )

Proof of Theorem rhmopp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . 2  |-  ( Base `  (oppr
`  R ) )  =  ( Base `  (oppr `  R
) )
2 eqid 2193 . 2  |-  ( 1r
`  (oppr
`  R ) )  =  ( 1r `  (oppr `  R ) )
3 eqid 2193 . 2  |-  ( 1r
`  (oppr
`  S ) )  =  ( 1r `  (oppr `  S ) )
4 eqid 2193 . 2  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
5 eqid 2193 . 2  |-  ( .r
`  (oppr
`  S ) )  =  ( .r `  (oppr `  S ) )
6 rhmrcl1 13654 . . 3  |-  ( F  e.  ( R RingHom  S
)  ->  R  e.  Ring )
7 eqid 2193 . . . . 5  |-  (oppr `  R
)  =  (oppr `  R
)
87opprringbg 13579 . . . 4  |-  ( R  e.  Ring  ->  ( R  e.  Ring  <->  (oppr
`  R )  e. 
Ring ) )
96, 8syl 14 . . 3  |-  ( F  e.  ( R RingHom  S
)  ->  ( R  e.  Ring  <->  (oppr
`  R )  e. 
Ring ) )
106, 9mpbid 147 . 2  |-  ( F  e.  ( R RingHom  S
)  ->  (oppr
`  R )  e. 
Ring )
11 rhmrcl2 13655 . . 3  |-  ( F  e.  ( R RingHom  S
)  ->  S  e.  Ring )
12 eqid 2193 . . . . 5  |-  (oppr `  S
)  =  (oppr `  S
)
1312opprringbg 13579 . . . 4  |-  ( S  e.  Ring  ->  ( S  e.  Ring  <->  (oppr
`  S )  e. 
Ring ) )
1411, 13syl 14 . . 3  |-  ( F  e.  ( R RingHom  S
)  ->  ( S  e.  Ring  <->  (oppr
`  S )  e. 
Ring ) )
1511, 14mpbid 147 . 2  |-  ( F  e.  ( R RingHom  S
)  ->  (oppr
`  S )  e. 
Ring )
16 eqid 2193 . . . 4  |-  ( 1r
`  R )  =  ( 1r `  R
)
17 eqid 2193 . . . 4  |-  ( 1r
`  S )  =  ( 1r `  S
)
1816, 17rhm1 13666 . . 3  |-  ( F  e.  ( R RingHom  S
)  ->  ( F `  ( 1r `  R
) )  =  ( 1r `  S ) )
197, 16oppr1g 13581 . . . . . 6  |-  ( R  e.  Ring  ->  ( 1r
`  R )  =  ( 1r `  (oppr `  R
) ) )
206, 19syl 14 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  ( 1r `  R )  =  ( 1r `  (oppr `  R
) ) )
2120eqcomd 2199 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  ( 1r `  (oppr
`  R ) )  =  ( 1r `  R ) )
2221fveq2d 5559 . . 3  |-  ( F  e.  ( R RingHom  S
)  ->  ( F `  ( 1r `  (oppr `  R
) ) )  =  ( F `  ( 1r `  R ) ) )
2312, 17oppr1g 13581 . . . . 5  |-  ( S  e.  Ring  ->  ( 1r
`  S )  =  ( 1r `  (oppr `  S
) ) )
2411, 23syl 14 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  ( 1r `  S )  =  ( 1r `  (oppr `  S
) ) )
2524eqcomd 2199 . . 3  |-  ( F  e.  ( R RingHom  S
)  ->  ( 1r `  (oppr
`  S ) )  =  ( 1r `  S ) )
2618, 22, 253eqtr4d 2236 . 2  |-  ( F  e.  ( R RingHom  S
)  ->  ( F `  ( 1r `  (oppr `  R
) ) )  =  ( 1r `  (oppr `  S
) ) )
27 simpl 109 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  F  e.  ( R RingHom  S )
)
28 simprr 531 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  y  e.  ( Base `  (oppr `  R
) ) )
29 eqid 2193 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
307, 29opprbasg 13574 . . . . . . 7  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  (oppr
`  R ) ) )
316, 30syl 14 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  ( Base `  R )  =  (
Base `  (oppr
`  R ) ) )
3227, 31syl 14 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  ( Base `  R )  =  ( Base `  (oppr `  R
) ) )
3328, 32eleqtrrd 2273 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  y  e.  ( Base `  R
) )
34 simprl 529 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  x  e.  ( Base `  (oppr `  R
) ) )
3534, 32eleqtrrd 2273 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  x  e.  ( Base `  R
) )
36 eqid 2193 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
37 eqid 2193 . . . . 5  |-  ( .r
`  S )  =  ( .r `  S
)
3829, 36, 37rhmmul 13663 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  y  e.  ( Base `  R
)  /\  x  e.  ( Base `  R )
)  ->  ( F `  ( y ( .r
`  R ) x ) )  =  ( ( F `  y
) ( .r `  S ) ( F `
 x ) ) )
3927, 33, 35, 38syl3anc 1249 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  ( F `  ( y
( .r `  R
) x ) )  =  ( ( F `
 y ) ( .r `  S ) ( F `  x
) ) )
4027, 6syl 14 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  R  e.  Ring )
4129, 36, 7, 4opprmulg 13570 . . . . 5  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  (oppr `  R
) )  /\  y  e.  ( Base `  (oppr `  R
) ) )  -> 
( x ( .r
`  (oppr
`  R ) ) y )  =  ( y ( .r `  R ) x ) )
4240, 34, 28, 41syl3anc 1249 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  (
x ( .r `  (oppr `  R ) ) y )  =  ( y ( .r `  R
) x ) )
4342fveq2d 5559 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  ( F `  ( x
( .r `  (oppr `  R
) ) y ) )  =  ( F `
 ( y ( .r `  R ) x ) ) )
4427, 11syl 14 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  S  e.  Ring )
45 eqid 2193 . . . . . . 7  |-  ( Base `  S )  =  (
Base `  S )
4629, 45rhmf 13662 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  F :
( Base `  R ) --> ( Base `  S )
)
4727, 46syl 14 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  F : ( Base `  R
) --> ( Base `  S
) )
4847, 35ffvelcdmd 5695 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  ( F `  x )  e.  ( Base `  S
) )
4947, 33ffvelcdmd 5695 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  ( F `  y )  e.  ( Base `  S
) )
5045, 37, 12, 5opprmulg 13570 . . . 4  |-  ( ( S  e.  Ring  /\  ( F `  x )  e.  ( Base `  S
)  /\  ( F `  y )  e.  (
Base `  S )
)  ->  ( ( F `  x )
( .r `  (oppr `  S
) ) ( F `
 y ) )  =  ( ( F `
 y ) ( .r `  S ) ( F `  x
) ) )
5144, 48, 49, 50syl3anc 1249 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  (
( F `  x
) ( .r `  (oppr `  S ) ) ( F `  y ) )  =  ( ( F `  y ) ( .r `  S
) ( F `  x ) ) )
5239, 43, 513eqtr4d 2236 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  ( F `  ( x
( .r `  (oppr `  R
) ) y ) )  =  ( ( F `  x ) ( .r `  (oppr `  S
) ) ( F `
 y ) ) )
5310ringgrpd 13504 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  (oppr
`  R )  e. 
Grp )
5415ringgrpd 13504 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  (oppr
`  S )  e. 
Grp )
55 rhmghm 13661 . . . . . . . . . 10  |-  ( F  e.  ( R RingHom  S
)  ->  F  e.  ( R  GrpHom  S ) )
5655ad2antrr 488 . . . . . . . . 9  |-  ( ( ( F  e.  ( R RingHom  S )  /\  x  e.  ( Base `  R
) )  /\  y  e.  ( Base `  R
) )  ->  F  e.  ( R  GrpHom  S ) )
57 simplr 528 . . . . . . . . 9  |-  ( ( ( F  e.  ( R RingHom  S )  /\  x  e.  ( Base `  R
) )  /\  y  e.  ( Base `  R
) )  ->  x  e.  ( Base `  R
) )
58 simpr 110 . . . . . . . . 9  |-  ( ( ( F  e.  ( R RingHom  S )  /\  x  e.  ( Base `  R
) )  /\  y  e.  ( Base `  R
) )  ->  y  e.  ( Base `  R
) )
59 eqid 2193 . . . . . . . . . 10  |-  ( +g  `  R )  =  ( +g  `  R )
60 eqid 2193 . . . . . . . . . 10  |-  ( +g  `  S )  =  ( +g  `  S )
6129, 59, 60ghmlin 13321 . . . . . . . . 9  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( F `  ( x ( +g  `  R ) y ) )  =  ( ( F `  x ) ( +g  `  S
) ( F `  y ) ) )
6256, 57, 58, 61syl3anc 1249 . . . . . . . 8  |-  ( ( ( F  e.  ( R RingHom  S )  /\  x  e.  ( Base `  R
) )  /\  y  e.  ( Base `  R
) )  ->  ( F `  ( x
( +g  `  R ) y ) )  =  ( ( F `  x ) ( +g  `  S ) ( F `
 y ) ) )
6362ralrimiva 2567 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  x  e.  ( Base `  R
) )  ->  A. y  e.  ( Base `  R
) ( F `  ( x ( +g  `  R ) y ) )  =  ( ( F `  x ) ( +g  `  S
) ( F `  y ) ) )
6463ralrimiva 2567 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) ( F `  ( x ( +g  `  R ) y ) )  =  ( ( F `  x ) ( +g  `  S
) ( F `  y ) ) )
6546, 64jca 306 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  ( F : ( Base `  R
) --> ( Base `  S
)  /\  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) ( F `  ( x ( +g  `  R ) y ) )  =  ( ( F `  x ) ( +g  `  S
) ( F `  y ) ) ) )
6653, 54, 65jca31 309 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  ( (
(oppr `  R )  e.  Grp  /\  (oppr
`  S )  e. 
Grp )  /\  ( F : ( Base `  R
) --> ( Base `  S
)  /\  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) ( F `  ( x ( +g  `  R ) y ) )  =  ( ( F `  x ) ( +g  `  S
) ( F `  y ) ) ) ) )
6712, 45opprbasg 13574 . . . . . . . 8  |-  ( S  e.  Ring  ->  ( Base `  S )  =  (
Base `  (oppr
`  S ) ) )
6811, 67syl 14 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  ( Base `  S )  =  (
Base `  (oppr
`  S ) ) )
6931, 68feq23d 5400 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  ( F : ( Base `  R
) --> ( Base `  S
)  <->  F : ( Base `  (oppr
`  R ) ) --> ( Base `  (oppr `  S
) ) ) )
707, 59oppraddg 13575 . . . . . . . . . . . 12  |-  ( R  e.  Ring  ->  ( +g  `  R )  =  ( +g  `  (oppr `  R
) ) )
716, 70syl 14 . . . . . . . . . . 11  |-  ( F  e.  ( R RingHom  S
)  ->  ( +g  `  R )  =  ( +g  `  (oppr `  R
) ) )
7271oveqd 5936 . . . . . . . . . 10  |-  ( F  e.  ( R RingHom  S
)  ->  ( x
( +g  `  R ) y )  =  ( x ( +g  `  (oppr `  R
) ) y ) )
7372fveq2d 5559 . . . . . . . . 9  |-  ( F  e.  ( R RingHom  S
)  ->  ( F `  ( x ( +g  `  R ) y ) )  =  ( F `
 ( x ( +g  `  (oppr `  R
) ) y ) ) )
7412, 60oppraddg 13575 . . . . . . . . . . 11  |-  ( S  e.  Ring  ->  ( +g  `  S )  =  ( +g  `  (oppr `  S
) ) )
7511, 74syl 14 . . . . . . . . . 10  |-  ( F  e.  ( R RingHom  S
)  ->  ( +g  `  S )  =  ( +g  `  (oppr `  S
) ) )
7675oveqd 5936 . . . . . . . . 9  |-  ( F  e.  ( R RingHom  S
)  ->  ( ( F `  x )
( +g  `  S ) ( F `  y
) )  =  ( ( F `  x
) ( +g  `  (oppr `  S
) ) ( F `
 y ) ) )
7773, 76eqeq12d 2208 . . . . . . . 8  |-  ( F  e.  ( R RingHom  S
)  ->  ( ( F `  ( x
( +g  `  R ) y ) )  =  ( ( F `  x ) ( +g  `  S ) ( F `
 y ) )  <-> 
( F `  (
x ( +g  `  (oppr `  R
) ) y ) )  =  ( ( F `  x ) ( +g  `  (oppr `  S
) ) ( F `
 y ) ) ) )
7831, 77raleqbidv 2706 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  ( A. y  e.  ( Base `  R ) ( F `
 ( x ( +g  `  R ) y ) )  =  ( ( F `  x ) ( +g  `  S ) ( F `
 y ) )  <->  A. y  e.  ( Base `  (oppr
`  R ) ) ( F `  (
x ( +g  `  (oppr `  R
) ) y ) )  =  ( ( F `  x ) ( +g  `  (oppr `  S
) ) ( F `
 y ) ) ) )
7931, 78raleqbidv 2706 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  ( A. x  e.  ( Base `  R ) A. y  e.  ( Base `  R
) ( F `  ( x ( +g  `  R ) y ) )  =  ( ( F `  x ) ( +g  `  S
) ( F `  y ) )  <->  A. x  e.  ( Base `  (oppr `  R
) ) A. y  e.  ( Base `  (oppr `  R
) ) ( F `
 ( x ( +g  `  (oppr `  R
) ) y ) )  =  ( ( F `  x ) ( +g  `  (oppr `  S
) ) ( F `
 y ) ) ) )
8069, 79anbi12d 473 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  ( ( F : ( Base `  R
) --> ( Base `  S
)  /\  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) ( F `  ( x ( +g  `  R ) y ) )  =  ( ( F `  x ) ( +g  `  S
) ( F `  y ) ) )  <-> 
( F : (
Base `  (oppr
`  R ) ) --> ( Base `  (oppr `  S
) )  /\  A. x  e.  ( Base `  (oppr
`  R ) ) A. y  e.  (
Base `  (oppr
`  R ) ) ( F `  (
x ( +g  `  (oppr `  R
) ) y ) )  =  ( ( F `  x ) ( +g  `  (oppr `  S
) ) ( F `
 y ) ) ) ) )
8180anbi2d 464 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  ( (
( (oppr
`  R )  e. 
Grp  /\  (oppr
`  S )  e. 
Grp )  /\  ( F : ( Base `  R
) --> ( Base `  S
)  /\  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) ( F `  ( x ( +g  `  R ) y ) )  =  ( ( F `  x ) ( +g  `  S
) ( F `  y ) ) ) )  <->  ( ( (oppr `  R )  e.  Grp  /\  (oppr
`  S )  e. 
Grp )  /\  ( F : ( Base `  (oppr `  R
) ) --> ( Base `  (oppr
`  S ) )  /\  A. x  e.  ( Base `  (oppr `  R
) ) A. y  e.  ( Base `  (oppr `  R
) ) ( F `
 ( x ( +g  `  (oppr `  R
) ) y ) )  =  ( ( F `  x ) ( +g  `  (oppr `  S
) ) ( F `
 y ) ) ) ) ) )
8266, 81mpbid 147 . . 3  |-  ( F  e.  ( R RingHom  S
)  ->  ( (
(oppr `  R )  e.  Grp  /\  (oppr
`  S )  e. 
Grp )  /\  ( F : ( Base `  (oppr `  R
) ) --> ( Base `  (oppr
`  S ) )  /\  A. x  e.  ( Base `  (oppr `  R
) ) A. y  e.  ( Base `  (oppr `  R
) ) ( F `
 ( x ( +g  `  (oppr `  R
) ) y ) )  =  ( ( F `  x ) ( +g  `  (oppr `  S
) ) ( F `
 y ) ) ) ) )
83 eqid 2193 . . . 4  |-  ( Base `  (oppr
`  S ) )  =  ( Base `  (oppr `  S
) )
84 eqid 2193 . . . 4  |-  ( +g  `  (oppr
`  R ) )  =  ( +g  `  (oppr `  R
) )
85 eqid 2193 . . . 4  |-  ( +g  `  (oppr
`  S ) )  =  ( +g  `  (oppr `  S
) )
861, 83, 84, 85isghm 13316 . . 3  |-  ( F  e.  ( (oppr `  R
)  GrpHom  (oppr
`  S ) )  <-> 
( ( (oppr `  R
)  e.  Grp  /\  (oppr `  S )  e.  Grp )  /\  ( F :
( Base `  (oppr
`  R ) ) --> ( Base `  (oppr `  S
) )  /\  A. x  e.  ( Base `  (oppr
`  R ) ) A. y  e.  (
Base `  (oppr
`  R ) ) ( F `  (
x ( +g  `  (oppr `  R
) ) y ) )  =  ( ( F `  x ) ( +g  `  (oppr `  S
) ) ( F `
 y ) ) ) ) )
8782, 86sylibr 134 . 2  |-  ( F  e.  ( R RingHom  S
)  ->  F  e.  ( (oppr
`  R )  GrpHom  (oppr `  S ) ) )
881, 2, 3, 4, 5, 10, 15, 26, 52, 87isrhm2d 13664 1  |-  ( F  e.  ( R RingHom  S
)  ->  F  e.  ( (oppr
`  R ) RingHom  (oppr `  S
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   -->wf 5251   ` cfv 5255  (class class class)co 5919   Basecbs 12621   +g cplusg 12698   .rcmulr 12699   Grpcgrp 13075    GrpHom cghm 13313   1rcur 13458   Ringcrg 13495  opprcoppr 13566   RingHom crh 13649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-tpos 6300  df-map 6706  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-mhm 13034  df-grp 13078  df-ghm 13314  df-mgp 13420  df-ur 13459  df-ring 13497  df-oppr 13567  df-rhm 13651
This theorem is referenced by:  elrhmunit  13676
  Copyright terms: Public domain W3C validator