ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmopp Unicode version

Theorem rhmopp 13938
Description: A ring homomorphism is also a ring homomorphism for the opposite rings. (Contributed by Thierry Arnoux, 27-Oct-2017.)
Assertion
Ref Expression
rhmopp  |-  ( F  e.  ( R RingHom  S
)  ->  F  e.  ( (oppr
`  R ) RingHom  (oppr `  S
) ) )

Proof of Theorem rhmopp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2205 . 2  |-  ( Base `  (oppr
`  R ) )  =  ( Base `  (oppr `  R
) )
2 eqid 2205 . 2  |-  ( 1r
`  (oppr
`  R ) )  =  ( 1r `  (oppr `  R ) )
3 eqid 2205 . 2  |-  ( 1r
`  (oppr
`  S ) )  =  ( 1r `  (oppr `  S ) )
4 eqid 2205 . 2  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
5 eqid 2205 . 2  |-  ( .r
`  (oppr
`  S ) )  =  ( .r `  (oppr `  S ) )
6 rhmrcl1 13917 . . 3  |-  ( F  e.  ( R RingHom  S
)  ->  R  e.  Ring )
7 eqid 2205 . . . . 5  |-  (oppr `  R
)  =  (oppr `  R
)
87opprringbg 13842 . . . 4  |-  ( R  e.  Ring  ->  ( R  e.  Ring  <->  (oppr
`  R )  e. 
Ring ) )
96, 8syl 14 . . 3  |-  ( F  e.  ( R RingHom  S
)  ->  ( R  e.  Ring  <->  (oppr
`  R )  e. 
Ring ) )
106, 9mpbid 147 . 2  |-  ( F  e.  ( R RingHom  S
)  ->  (oppr
`  R )  e. 
Ring )
11 rhmrcl2 13918 . . 3  |-  ( F  e.  ( R RingHom  S
)  ->  S  e.  Ring )
12 eqid 2205 . . . . 5  |-  (oppr `  S
)  =  (oppr `  S
)
1312opprringbg 13842 . . . 4  |-  ( S  e.  Ring  ->  ( S  e.  Ring  <->  (oppr
`  S )  e. 
Ring ) )
1411, 13syl 14 . . 3  |-  ( F  e.  ( R RingHom  S
)  ->  ( S  e.  Ring  <->  (oppr
`  S )  e. 
Ring ) )
1511, 14mpbid 147 . 2  |-  ( F  e.  ( R RingHom  S
)  ->  (oppr
`  S )  e. 
Ring )
16 eqid 2205 . . . 4  |-  ( 1r
`  R )  =  ( 1r `  R
)
17 eqid 2205 . . . 4  |-  ( 1r
`  S )  =  ( 1r `  S
)
1816, 17rhm1 13929 . . 3  |-  ( F  e.  ( R RingHom  S
)  ->  ( F `  ( 1r `  R
) )  =  ( 1r `  S ) )
197, 16oppr1g 13844 . . . . . 6  |-  ( R  e.  Ring  ->  ( 1r
`  R )  =  ( 1r `  (oppr `  R
) ) )
206, 19syl 14 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  ( 1r `  R )  =  ( 1r `  (oppr `  R
) ) )
2120eqcomd 2211 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  ( 1r `  (oppr
`  R ) )  =  ( 1r `  R ) )
2221fveq2d 5580 . . 3  |-  ( F  e.  ( R RingHom  S
)  ->  ( F `  ( 1r `  (oppr `  R
) ) )  =  ( F `  ( 1r `  R ) ) )
2312, 17oppr1g 13844 . . . . 5  |-  ( S  e.  Ring  ->  ( 1r
`  S )  =  ( 1r `  (oppr `  S
) ) )
2411, 23syl 14 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  ( 1r `  S )  =  ( 1r `  (oppr `  S
) ) )
2524eqcomd 2211 . . 3  |-  ( F  e.  ( R RingHom  S
)  ->  ( 1r `  (oppr
`  S ) )  =  ( 1r `  S ) )
2618, 22, 253eqtr4d 2248 . 2  |-  ( F  e.  ( R RingHom  S
)  ->  ( F `  ( 1r `  (oppr `  R
) ) )  =  ( 1r `  (oppr `  S
) ) )
27 simpl 109 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  F  e.  ( R RingHom  S )
)
28 simprr 531 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  y  e.  ( Base `  (oppr `  R
) ) )
29 eqid 2205 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
307, 29opprbasg 13837 . . . . . . 7  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  (oppr
`  R ) ) )
316, 30syl 14 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  ( Base `  R )  =  (
Base `  (oppr
`  R ) ) )
3227, 31syl 14 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  ( Base `  R )  =  ( Base `  (oppr `  R
) ) )
3328, 32eleqtrrd 2285 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  y  e.  ( Base `  R
) )
34 simprl 529 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  x  e.  ( Base `  (oppr `  R
) ) )
3534, 32eleqtrrd 2285 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  x  e.  ( Base `  R
) )
36 eqid 2205 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
37 eqid 2205 . . . . 5  |-  ( .r
`  S )  =  ( .r `  S
)
3829, 36, 37rhmmul 13926 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  y  e.  ( Base `  R
)  /\  x  e.  ( Base `  R )
)  ->  ( F `  ( y ( .r
`  R ) x ) )  =  ( ( F `  y
) ( .r `  S ) ( F `
 x ) ) )
3927, 33, 35, 38syl3anc 1250 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  ( F `  ( y
( .r `  R
) x ) )  =  ( ( F `
 y ) ( .r `  S ) ( F `  x
) ) )
4027, 6syl 14 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  R  e.  Ring )
4129, 36, 7, 4opprmulg 13833 . . . . 5  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  (oppr `  R
) )  /\  y  e.  ( Base `  (oppr `  R
) ) )  -> 
( x ( .r
`  (oppr
`  R ) ) y )  =  ( y ( .r `  R ) x ) )
4240, 34, 28, 41syl3anc 1250 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  (
x ( .r `  (oppr `  R ) ) y )  =  ( y ( .r `  R
) x ) )
4342fveq2d 5580 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  ( F `  ( x
( .r `  (oppr `  R
) ) y ) )  =  ( F `
 ( y ( .r `  R ) x ) ) )
4427, 11syl 14 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  S  e.  Ring )
45 eqid 2205 . . . . . . 7  |-  ( Base `  S )  =  (
Base `  S )
4629, 45rhmf 13925 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  F :
( Base `  R ) --> ( Base `  S )
)
4727, 46syl 14 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  F : ( Base `  R
) --> ( Base `  S
) )
4847, 35ffvelcdmd 5716 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  ( F `  x )  e.  ( Base `  S
) )
4947, 33ffvelcdmd 5716 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  ( F `  y )  e.  ( Base `  S
) )
5045, 37, 12, 5opprmulg 13833 . . . 4  |-  ( ( S  e.  Ring  /\  ( F `  x )  e.  ( Base `  S
)  /\  ( F `  y )  e.  (
Base `  S )
)  ->  ( ( F `  x )
( .r `  (oppr `  S
) ) ( F `
 y ) )  =  ( ( F `
 y ) ( .r `  S ) ( F `  x
) ) )
5144, 48, 49, 50syl3anc 1250 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  (
( F `  x
) ( .r `  (oppr `  S ) ) ( F `  y ) )  =  ( ( F `  y ) ( .r `  S
) ( F `  x ) ) )
5239, 43, 513eqtr4d 2248 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  (
x  e.  ( Base `  (oppr
`  R ) )  /\  y  e.  (
Base `  (oppr
`  R ) ) ) )  ->  ( F `  ( x
( .r `  (oppr `  R
) ) y ) )  =  ( ( F `  x ) ( .r `  (oppr `  S
) ) ( F `
 y ) ) )
5310ringgrpd 13767 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  (oppr
`  R )  e. 
Grp )
5415ringgrpd 13767 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  (oppr
`  S )  e. 
Grp )
55 rhmghm 13924 . . . . . . . . . 10  |-  ( F  e.  ( R RingHom  S
)  ->  F  e.  ( R  GrpHom  S ) )
5655ad2antrr 488 . . . . . . . . 9  |-  ( ( ( F  e.  ( R RingHom  S )  /\  x  e.  ( Base `  R
) )  /\  y  e.  ( Base `  R
) )  ->  F  e.  ( R  GrpHom  S ) )
57 simplr 528 . . . . . . . . 9  |-  ( ( ( F  e.  ( R RingHom  S )  /\  x  e.  ( Base `  R
) )  /\  y  e.  ( Base `  R
) )  ->  x  e.  ( Base `  R
) )
58 simpr 110 . . . . . . . . 9  |-  ( ( ( F  e.  ( R RingHom  S )  /\  x  e.  ( Base `  R
) )  /\  y  e.  ( Base `  R
) )  ->  y  e.  ( Base `  R
) )
59 eqid 2205 . . . . . . . . . 10  |-  ( +g  `  R )  =  ( +g  `  R )
60 eqid 2205 . . . . . . . . . 10  |-  ( +g  `  S )  =  ( +g  `  S )
6129, 59, 60ghmlin 13584 . . . . . . . . 9  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( F `  ( x ( +g  `  R ) y ) )  =  ( ( F `  x ) ( +g  `  S
) ( F `  y ) ) )
6256, 57, 58, 61syl3anc 1250 . . . . . . . 8  |-  ( ( ( F  e.  ( R RingHom  S )  /\  x  e.  ( Base `  R
) )  /\  y  e.  ( Base `  R
) )  ->  ( F `  ( x
( +g  `  R ) y ) )  =  ( ( F `  x ) ( +g  `  S ) ( F `
 y ) ) )
6362ralrimiva 2579 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  x  e.  ( Base `  R
) )  ->  A. y  e.  ( Base `  R
) ( F `  ( x ( +g  `  R ) y ) )  =  ( ( F `  x ) ( +g  `  S
) ( F `  y ) ) )
6463ralrimiva 2579 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) ( F `  ( x ( +g  `  R ) y ) )  =  ( ( F `  x ) ( +g  `  S
) ( F `  y ) ) )
6546, 64jca 306 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  ( F : ( Base `  R
) --> ( Base `  S
)  /\  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) ( F `  ( x ( +g  `  R ) y ) )  =  ( ( F `  x ) ( +g  `  S
) ( F `  y ) ) ) )
6653, 54, 65jca31 309 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  ( (
(oppr `  R )  e.  Grp  /\  (oppr
`  S )  e. 
Grp )  /\  ( F : ( Base `  R
) --> ( Base `  S
)  /\  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) ( F `  ( x ( +g  `  R ) y ) )  =  ( ( F `  x ) ( +g  `  S
) ( F `  y ) ) ) ) )
6712, 45opprbasg 13837 . . . . . . . 8  |-  ( S  e.  Ring  ->  ( Base `  S )  =  (
Base `  (oppr
`  S ) ) )
6811, 67syl 14 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  ( Base `  S )  =  (
Base `  (oppr
`  S ) ) )
6931, 68feq23d 5421 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  ( F : ( Base `  R
) --> ( Base `  S
)  <->  F : ( Base `  (oppr
`  R ) ) --> ( Base `  (oppr `  S
) ) ) )
707, 59oppraddg 13838 . . . . . . . . . . . 12  |-  ( R  e.  Ring  ->  ( +g  `  R )  =  ( +g  `  (oppr `  R
) ) )
716, 70syl 14 . . . . . . . . . . 11  |-  ( F  e.  ( R RingHom  S
)  ->  ( +g  `  R )  =  ( +g  `  (oppr `  R
) ) )
7271oveqd 5961 . . . . . . . . . 10  |-  ( F  e.  ( R RingHom  S
)  ->  ( x
( +g  `  R ) y )  =  ( x ( +g  `  (oppr `  R
) ) y ) )
7372fveq2d 5580 . . . . . . . . 9  |-  ( F  e.  ( R RingHom  S
)  ->  ( F `  ( x ( +g  `  R ) y ) )  =  ( F `
 ( x ( +g  `  (oppr `  R
) ) y ) ) )
7412, 60oppraddg 13838 . . . . . . . . . . 11  |-  ( S  e.  Ring  ->  ( +g  `  S )  =  ( +g  `  (oppr `  S
) ) )
7511, 74syl 14 . . . . . . . . . 10  |-  ( F  e.  ( R RingHom  S
)  ->  ( +g  `  S )  =  ( +g  `  (oppr `  S
) ) )
7675oveqd 5961 . . . . . . . . 9  |-  ( F  e.  ( R RingHom  S
)  ->  ( ( F `  x )
( +g  `  S ) ( F `  y
) )  =  ( ( F `  x
) ( +g  `  (oppr `  S
) ) ( F `
 y ) ) )
7773, 76eqeq12d 2220 . . . . . . . 8  |-  ( F  e.  ( R RingHom  S
)  ->  ( ( F `  ( x
( +g  `  R ) y ) )  =  ( ( F `  x ) ( +g  `  S ) ( F `
 y ) )  <-> 
( F `  (
x ( +g  `  (oppr `  R
) ) y ) )  =  ( ( F `  x ) ( +g  `  (oppr `  S
) ) ( F `
 y ) ) ) )
7831, 77raleqbidv 2718 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  ( A. y  e.  ( Base `  R ) ( F `
 ( x ( +g  `  R ) y ) )  =  ( ( F `  x ) ( +g  `  S ) ( F `
 y ) )  <->  A. y  e.  ( Base `  (oppr
`  R ) ) ( F `  (
x ( +g  `  (oppr `  R
) ) y ) )  =  ( ( F `  x ) ( +g  `  (oppr `  S
) ) ( F `
 y ) ) ) )
7931, 78raleqbidv 2718 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  ( A. x  e.  ( Base `  R ) A. y  e.  ( Base `  R
) ( F `  ( x ( +g  `  R ) y ) )  =  ( ( F `  x ) ( +g  `  S
) ( F `  y ) )  <->  A. x  e.  ( Base `  (oppr `  R
) ) A. y  e.  ( Base `  (oppr `  R
) ) ( F `
 ( x ( +g  `  (oppr `  R
) ) y ) )  =  ( ( F `  x ) ( +g  `  (oppr `  S
) ) ( F `
 y ) ) ) )
8069, 79anbi12d 473 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  ( ( F : ( Base `  R
) --> ( Base `  S
)  /\  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) ( F `  ( x ( +g  `  R ) y ) )  =  ( ( F `  x ) ( +g  `  S
) ( F `  y ) ) )  <-> 
( F : (
Base `  (oppr
`  R ) ) --> ( Base `  (oppr `  S
) )  /\  A. x  e.  ( Base `  (oppr
`  R ) ) A. y  e.  (
Base `  (oppr
`  R ) ) ( F `  (
x ( +g  `  (oppr `  R
) ) y ) )  =  ( ( F `  x ) ( +g  `  (oppr `  S
) ) ( F `
 y ) ) ) ) )
8180anbi2d 464 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  ( (
( (oppr
`  R )  e. 
Grp  /\  (oppr
`  S )  e. 
Grp )  /\  ( F : ( Base `  R
) --> ( Base `  S
)  /\  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) ( F `  ( x ( +g  `  R ) y ) )  =  ( ( F `  x ) ( +g  `  S
) ( F `  y ) ) ) )  <->  ( ( (oppr `  R )  e.  Grp  /\  (oppr
`  S )  e. 
Grp )  /\  ( F : ( Base `  (oppr `  R
) ) --> ( Base `  (oppr
`  S ) )  /\  A. x  e.  ( Base `  (oppr `  R
) ) A. y  e.  ( Base `  (oppr `  R
) ) ( F `
 ( x ( +g  `  (oppr `  R
) ) y ) )  =  ( ( F `  x ) ( +g  `  (oppr `  S
) ) ( F `
 y ) ) ) ) ) )
8266, 81mpbid 147 . . 3  |-  ( F  e.  ( R RingHom  S
)  ->  ( (
(oppr `  R )  e.  Grp  /\  (oppr
`  S )  e. 
Grp )  /\  ( F : ( Base `  (oppr `  R
) ) --> ( Base `  (oppr
`  S ) )  /\  A. x  e.  ( Base `  (oppr `  R
) ) A. y  e.  ( Base `  (oppr `  R
) ) ( F `
 ( x ( +g  `  (oppr `  R
) ) y ) )  =  ( ( F `  x ) ( +g  `  (oppr `  S
) ) ( F `
 y ) ) ) ) )
83 eqid 2205 . . . 4  |-  ( Base `  (oppr
`  S ) )  =  ( Base `  (oppr `  S
) )
84 eqid 2205 . . . 4  |-  ( +g  `  (oppr
`  R ) )  =  ( +g  `  (oppr `  R
) )
85 eqid 2205 . . . 4  |-  ( +g  `  (oppr
`  S ) )  =  ( +g  `  (oppr `  S
) )
861, 83, 84, 85isghm 13579 . . 3  |-  ( F  e.  ( (oppr `  R
)  GrpHom  (oppr
`  S ) )  <-> 
( ( (oppr `  R
)  e.  Grp  /\  (oppr `  S )  e.  Grp )  /\  ( F :
( Base `  (oppr
`  R ) ) --> ( Base `  (oppr `  S
) )  /\  A. x  e.  ( Base `  (oppr
`  R ) ) A. y  e.  (
Base `  (oppr
`  R ) ) ( F `  (
x ( +g  `  (oppr `  R
) ) y ) )  =  ( ( F `  x ) ( +g  `  (oppr `  S
) ) ( F `
 y ) ) ) ) )
8782, 86sylibr 134 . 2  |-  ( F  e.  ( R RingHom  S
)  ->  F  e.  ( (oppr
`  R )  GrpHom  (oppr `  S ) ) )
881, 2, 3, 4, 5, 10, 15, 26, 52, 87isrhm2d 13927 1  |-  ( F  e.  ( R RingHom  S
)  ->  F  e.  ( (oppr
`  R ) RingHom  (oppr `  S
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   A.wral 2484   -->wf 5267   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909   .rcmulr 12910   Grpcgrp 13332    GrpHom cghm 13576   1rcur 13721   Ringcrg 13758  opprcoppr 13829   RingHom crh 13912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-tpos 6331  df-map 6737  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-plusg 12922  df-mulr 12923  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-mhm 13291  df-grp 13335  df-ghm 13577  df-mgp 13683  df-ur 13722  df-ring 13760  df-oppr 13830  df-rhm 13914
This theorem is referenced by:  elrhmunit  13939
  Copyright terms: Public domain W3C validator