| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ghmlin | GIF version | ||
| Description: A homomorphism of groups is linear. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| ghmlin.x | ⊢ 𝑋 = (Base‘𝑆) |
| ghmlin.a | ⊢ + = (+g‘𝑆) |
| ghmlin.b | ⊢ ⨣ = (+g‘𝑇) |
| Ref | Expression |
|---|---|
| ghmlin | ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ∈ 𝑋) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmlin.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝑆) | |
| 2 | eqid 2196 | . . . . . 6 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 3 | ghmlin.a | . . . . . 6 ⊢ + = (+g‘𝑆) | |
| 4 | ghmlin.b | . . . . . 6 ⊢ ⨣ = (+g‘𝑇) | |
| 5 | 1, 2, 3, 4 | isghm 13449 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋⟶(Base‘𝑇) ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹‘𝑎) ⨣ (𝐹‘𝑏))))) |
| 6 | 5 | simprbi 275 | . . . 4 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋⟶(Base‘𝑇) ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹‘𝑎) ⨣ (𝐹‘𝑏)))) |
| 7 | 6 | simprd 114 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹‘𝑎) ⨣ (𝐹‘𝑏))) |
| 8 | fvoveq1 5948 | . . . . 5 ⊢ (𝑎 = 𝑈 → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑈 + 𝑏))) | |
| 9 | fveq2 5561 | . . . . . 6 ⊢ (𝑎 = 𝑈 → (𝐹‘𝑎) = (𝐹‘𝑈)) | |
| 10 | 9 | oveq1d 5940 | . . . . 5 ⊢ (𝑎 = 𝑈 → ((𝐹‘𝑎) ⨣ (𝐹‘𝑏)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑏))) |
| 11 | 8, 10 | eqeq12d 2211 | . . . 4 ⊢ (𝑎 = 𝑈 → ((𝐹‘(𝑎 + 𝑏)) = ((𝐹‘𝑎) ⨣ (𝐹‘𝑏)) ↔ (𝐹‘(𝑈 + 𝑏)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑏)))) |
| 12 | oveq2 5933 | . . . . . 6 ⊢ (𝑏 = 𝑉 → (𝑈 + 𝑏) = (𝑈 + 𝑉)) | |
| 13 | 12 | fveq2d 5565 | . . . . 5 ⊢ (𝑏 = 𝑉 → (𝐹‘(𝑈 + 𝑏)) = (𝐹‘(𝑈 + 𝑉))) |
| 14 | fveq2 5561 | . . . . . 6 ⊢ (𝑏 = 𝑉 → (𝐹‘𝑏) = (𝐹‘𝑉)) | |
| 15 | 14 | oveq2d 5941 | . . . . 5 ⊢ (𝑏 = 𝑉 → ((𝐹‘𝑈) ⨣ (𝐹‘𝑏)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑉))) |
| 16 | 13, 15 | eqeq12d 2211 | . . . 4 ⊢ (𝑏 = 𝑉 → ((𝐹‘(𝑈 + 𝑏)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑏)) ↔ (𝐹‘(𝑈 + 𝑉)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑉)))) |
| 17 | 11, 16 | rspc2v 2881 | . . 3 ⊢ ((𝑈 ∈ 𝑋 ∧ 𝑉 ∈ 𝑋) → (∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹‘𝑎) ⨣ (𝐹‘𝑏)) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑉)))) |
| 18 | 7, 17 | mpan9 281 | . 2 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑈 ∈ 𝑋 ∧ 𝑉 ∈ 𝑋)) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑉))) |
| 19 | 18 | 3impb 1201 | 1 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ∈ 𝑋) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑉))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ⟶wf 5255 ‘cfv 5259 (class class class)co 5925 Basecbs 12703 +gcplusg 12780 Grpcgrp 13202 GrpHom cghm 13446 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-inn 9008 df-ndx 12706 df-slot 12707 df-base 12709 df-ghm 13447 |
| This theorem is referenced by: ghmid 13455 ghminv 13456 ghmsub 13457 ghmmhm 13459 ghmrn 13463 resghm 13466 ghmpreima 13472 ghmnsgima 13474 ghmnsgpreima 13475 ghmf1o 13481 invghm 13535 rhmopp 13808 |
| Copyright terms: Public domain | W3C validator |