ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmlin GIF version

Theorem ghmlin 13454
Description: A homomorphism of groups is linear. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghmlin.x 𝑋 = (Base‘𝑆)
ghmlin.a + = (+g𝑆)
ghmlin.b = (+g𝑇)
Assertion
Ref Expression
ghmlin ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝑋𝑉𝑋) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹𝑈) (𝐹𝑉)))

Proof of Theorem ghmlin
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmlin.x . . . . . 6 𝑋 = (Base‘𝑆)
2 eqid 2196 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
3 ghmlin.a . . . . . 6 + = (+g𝑆)
4 ghmlin.b . . . . . 6 = (+g𝑇)
51, 2, 3, 4isghm 13449 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋⟶(Base‘𝑇) ∧ ∀𝑎𝑋𝑏𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹𝑎) (𝐹𝑏)))))
65simprbi 275 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋⟶(Base‘𝑇) ∧ ∀𝑎𝑋𝑏𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹𝑎) (𝐹𝑏))))
76simprd 114 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ∀𝑎𝑋𝑏𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹𝑎) (𝐹𝑏)))
8 fvoveq1 5948 . . . . 5 (𝑎 = 𝑈 → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑈 + 𝑏)))
9 fveq2 5561 . . . . . 6 (𝑎 = 𝑈 → (𝐹𝑎) = (𝐹𝑈))
109oveq1d 5940 . . . . 5 (𝑎 = 𝑈 → ((𝐹𝑎) (𝐹𝑏)) = ((𝐹𝑈) (𝐹𝑏)))
118, 10eqeq12d 2211 . . . 4 (𝑎 = 𝑈 → ((𝐹‘(𝑎 + 𝑏)) = ((𝐹𝑎) (𝐹𝑏)) ↔ (𝐹‘(𝑈 + 𝑏)) = ((𝐹𝑈) (𝐹𝑏))))
12 oveq2 5933 . . . . . 6 (𝑏 = 𝑉 → (𝑈 + 𝑏) = (𝑈 + 𝑉))
1312fveq2d 5565 . . . . 5 (𝑏 = 𝑉 → (𝐹‘(𝑈 + 𝑏)) = (𝐹‘(𝑈 + 𝑉)))
14 fveq2 5561 . . . . . 6 (𝑏 = 𝑉 → (𝐹𝑏) = (𝐹𝑉))
1514oveq2d 5941 . . . . 5 (𝑏 = 𝑉 → ((𝐹𝑈) (𝐹𝑏)) = ((𝐹𝑈) (𝐹𝑉)))
1613, 15eqeq12d 2211 . . . 4 (𝑏 = 𝑉 → ((𝐹‘(𝑈 + 𝑏)) = ((𝐹𝑈) (𝐹𝑏)) ↔ (𝐹‘(𝑈 + 𝑉)) = ((𝐹𝑈) (𝐹𝑉))))
1711, 16rspc2v 2881 . . 3 ((𝑈𝑋𝑉𝑋) → (∀𝑎𝑋𝑏𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹𝑎) (𝐹𝑏)) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹𝑈) (𝐹𝑉))))
187, 17mpan9 281 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑈𝑋𝑉𝑋)) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹𝑈) (𝐹𝑉)))
19183impb 1201 1 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝑋𝑉𝑋) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹𝑈) (𝐹𝑉)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  wral 2475  wf 5255  cfv 5259  (class class class)co 5925  Basecbs 12703  +gcplusg 12780  Grpcgrp 13202   GrpHom cghm 13446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-inn 9008  df-ndx 12706  df-slot 12707  df-base 12709  df-ghm 13447
This theorem is referenced by:  ghmid  13455  ghminv  13456  ghmsub  13457  ghmmhm  13459  ghmrn  13463  resghm  13466  ghmpreima  13472  ghmnsgima  13474  ghmnsgpreima  13475  ghmf1o  13481  invghm  13535  rhmopp  13808
  Copyright terms: Public domain W3C validator