| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ghmlin | GIF version | ||
| Description: A homomorphism of groups is linear. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| ghmlin.x | ⊢ 𝑋 = (Base‘𝑆) |
| ghmlin.a | ⊢ + = (+g‘𝑆) |
| ghmlin.b | ⊢ ⨣ = (+g‘𝑇) |
| Ref | Expression |
|---|---|
| ghmlin | ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ∈ 𝑋) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmlin.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝑆) | |
| 2 | eqid 2229 | . . . . . 6 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 3 | ghmlin.a | . . . . . 6 ⊢ + = (+g‘𝑆) | |
| 4 | ghmlin.b | . . . . . 6 ⊢ ⨣ = (+g‘𝑇) | |
| 5 | 1, 2, 3, 4 | isghm 13788 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋⟶(Base‘𝑇) ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹‘𝑎) ⨣ (𝐹‘𝑏))))) |
| 6 | 5 | simprbi 275 | . . . 4 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋⟶(Base‘𝑇) ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹‘𝑎) ⨣ (𝐹‘𝑏)))) |
| 7 | 6 | simprd 114 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹‘𝑎) ⨣ (𝐹‘𝑏))) |
| 8 | fvoveq1 6030 | . . . . 5 ⊢ (𝑎 = 𝑈 → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑈 + 𝑏))) | |
| 9 | fveq2 5629 | . . . . . 6 ⊢ (𝑎 = 𝑈 → (𝐹‘𝑎) = (𝐹‘𝑈)) | |
| 10 | 9 | oveq1d 6022 | . . . . 5 ⊢ (𝑎 = 𝑈 → ((𝐹‘𝑎) ⨣ (𝐹‘𝑏)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑏))) |
| 11 | 8, 10 | eqeq12d 2244 | . . . 4 ⊢ (𝑎 = 𝑈 → ((𝐹‘(𝑎 + 𝑏)) = ((𝐹‘𝑎) ⨣ (𝐹‘𝑏)) ↔ (𝐹‘(𝑈 + 𝑏)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑏)))) |
| 12 | oveq2 6015 | . . . . . 6 ⊢ (𝑏 = 𝑉 → (𝑈 + 𝑏) = (𝑈 + 𝑉)) | |
| 13 | 12 | fveq2d 5633 | . . . . 5 ⊢ (𝑏 = 𝑉 → (𝐹‘(𝑈 + 𝑏)) = (𝐹‘(𝑈 + 𝑉))) |
| 14 | fveq2 5629 | . . . . . 6 ⊢ (𝑏 = 𝑉 → (𝐹‘𝑏) = (𝐹‘𝑉)) | |
| 15 | 14 | oveq2d 6023 | . . . . 5 ⊢ (𝑏 = 𝑉 → ((𝐹‘𝑈) ⨣ (𝐹‘𝑏)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑉))) |
| 16 | 13, 15 | eqeq12d 2244 | . . . 4 ⊢ (𝑏 = 𝑉 → ((𝐹‘(𝑈 + 𝑏)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑏)) ↔ (𝐹‘(𝑈 + 𝑉)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑉)))) |
| 17 | 11, 16 | rspc2v 2920 | . . 3 ⊢ ((𝑈 ∈ 𝑋 ∧ 𝑉 ∈ 𝑋) → (∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹‘𝑎) ⨣ (𝐹‘𝑏)) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑉)))) |
| 18 | 7, 17 | mpan9 281 | . 2 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑈 ∈ 𝑋 ∧ 𝑉 ∈ 𝑋)) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑉))) |
| 19 | 18 | 3impb 1223 | 1 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ∈ 𝑋) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑉))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ⟶wf 5314 ‘cfv 5318 (class class class)co 6007 Basecbs 13040 +gcplusg 13118 Grpcgrp 13541 GrpHom cghm 13785 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-inn 9119 df-ndx 13043 df-slot 13044 df-base 13046 df-ghm 13786 |
| This theorem is referenced by: ghmid 13794 ghminv 13795 ghmsub 13796 ghmmhm 13798 ghmrn 13802 resghm 13805 ghmpreima 13811 ghmnsgima 13813 ghmnsgpreima 13814 ghmf1o 13820 invghm 13874 rhmopp 14148 |
| Copyright terms: Public domain | W3C validator |