ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmlin GIF version

Theorem ghmlin 13318
Description: A homomorphism of groups is linear. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghmlin.x 𝑋 = (Base‘𝑆)
ghmlin.a + = (+g𝑆)
ghmlin.b = (+g𝑇)
Assertion
Ref Expression
ghmlin ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝑋𝑉𝑋) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹𝑈) (𝐹𝑉)))

Proof of Theorem ghmlin
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmlin.x . . . . . 6 𝑋 = (Base‘𝑆)
2 eqid 2193 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
3 ghmlin.a . . . . . 6 + = (+g𝑆)
4 ghmlin.b . . . . . 6 = (+g𝑇)
51, 2, 3, 4isghm 13313 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋⟶(Base‘𝑇) ∧ ∀𝑎𝑋𝑏𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹𝑎) (𝐹𝑏)))))
65simprbi 275 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋⟶(Base‘𝑇) ∧ ∀𝑎𝑋𝑏𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹𝑎) (𝐹𝑏))))
76simprd 114 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ∀𝑎𝑋𝑏𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹𝑎) (𝐹𝑏)))
8 fvoveq1 5941 . . . . 5 (𝑎 = 𝑈 → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑈 + 𝑏)))
9 fveq2 5554 . . . . . 6 (𝑎 = 𝑈 → (𝐹𝑎) = (𝐹𝑈))
109oveq1d 5933 . . . . 5 (𝑎 = 𝑈 → ((𝐹𝑎) (𝐹𝑏)) = ((𝐹𝑈) (𝐹𝑏)))
118, 10eqeq12d 2208 . . . 4 (𝑎 = 𝑈 → ((𝐹‘(𝑎 + 𝑏)) = ((𝐹𝑎) (𝐹𝑏)) ↔ (𝐹‘(𝑈 + 𝑏)) = ((𝐹𝑈) (𝐹𝑏))))
12 oveq2 5926 . . . . . 6 (𝑏 = 𝑉 → (𝑈 + 𝑏) = (𝑈 + 𝑉))
1312fveq2d 5558 . . . . 5 (𝑏 = 𝑉 → (𝐹‘(𝑈 + 𝑏)) = (𝐹‘(𝑈 + 𝑉)))
14 fveq2 5554 . . . . . 6 (𝑏 = 𝑉 → (𝐹𝑏) = (𝐹𝑉))
1514oveq2d 5934 . . . . 5 (𝑏 = 𝑉 → ((𝐹𝑈) (𝐹𝑏)) = ((𝐹𝑈) (𝐹𝑉)))
1613, 15eqeq12d 2208 . . . 4 (𝑏 = 𝑉 → ((𝐹‘(𝑈 + 𝑏)) = ((𝐹𝑈) (𝐹𝑏)) ↔ (𝐹‘(𝑈 + 𝑉)) = ((𝐹𝑈) (𝐹𝑉))))
1711, 16rspc2v 2877 . . 3 ((𝑈𝑋𝑉𝑋) → (∀𝑎𝑋𝑏𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹𝑎) (𝐹𝑏)) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹𝑈) (𝐹𝑉))))
187, 17mpan9 281 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑈𝑋𝑉𝑋)) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹𝑈) (𝐹𝑉)))
19183impb 1201 1 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝑋𝑉𝑋) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹𝑈) (𝐹𝑉)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  wral 2472  wf 5250  cfv 5254  (class class class)co 5918  Basecbs 12618  +gcplusg 12695  Grpcgrp 13072   GrpHom cghm 13310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-inn 8983  df-ndx 12621  df-slot 12622  df-base 12624  df-ghm 13311
This theorem is referenced by:  ghmid  13319  ghminv  13320  ghmsub  13321  ghmmhm  13323  ghmrn  13327  resghm  13330  ghmpreima  13336  ghmnsgima  13338  ghmnsgpreima  13339  ghmf1o  13345  invghm  13399  rhmopp  13672
  Copyright terms: Public domain W3C validator