| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpinvinv | GIF version | ||
| Description: Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55. (Contributed by NM, 31-Mar-2014.) |
| Ref | Expression |
|---|---|
| grpinvinv.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinvinv.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvinv | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvinv.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | grpinvinv.n | . . . . 5 ⊢ 𝑁 = (invg‘𝐺) | |
| 3 | 1, 2 | grpinvcl 13455 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
| 4 | eqid 2206 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 5 | eqid 2206 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 6 | 1, 4, 5, 2 | grprinv 13458 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑁‘𝑋) ∈ 𝐵) → ((𝑁‘𝑋)(+g‘𝐺)(𝑁‘(𝑁‘𝑋))) = (0g‘𝐺)) |
| 7 | 3, 6 | syldan 282 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋)(+g‘𝐺)(𝑁‘(𝑁‘𝑋))) = (0g‘𝐺)) |
| 8 | 1, 4, 5, 2 | grplinv 13457 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋)(+g‘𝐺)𝑋) = (0g‘𝐺)) |
| 9 | 7, 8 | eqtr4d 2242 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋)(+g‘𝐺)(𝑁‘(𝑁‘𝑋))) = ((𝑁‘𝑋)(+g‘𝐺)𝑋)) |
| 10 | simpl 109 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → 𝐺 ∈ Grp) | |
| 11 | 1, 2 | grpinvcl 13455 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑁‘𝑋) ∈ 𝐵) → (𝑁‘(𝑁‘𝑋)) ∈ 𝐵) |
| 12 | 3, 11 | syldan 282 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑁‘𝑋)) ∈ 𝐵) |
| 13 | simpr 110 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 14 | 1, 4 | grplcan 13469 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ ((𝑁‘(𝑁‘𝑋)) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ (𝑁‘𝑋) ∈ 𝐵)) → (((𝑁‘𝑋)(+g‘𝐺)(𝑁‘(𝑁‘𝑋))) = ((𝑁‘𝑋)(+g‘𝐺)𝑋) ↔ (𝑁‘(𝑁‘𝑋)) = 𝑋)) |
| 15 | 10, 12, 13, 3, 14 | syl13anc 1252 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (((𝑁‘𝑋)(+g‘𝐺)(𝑁‘(𝑁‘𝑋))) = ((𝑁‘𝑋)(+g‘𝐺)𝑋) ↔ (𝑁‘(𝑁‘𝑋)) = 𝑋)) |
| 16 | 9, 15 | mpbid 147 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ‘cfv 5280 (class class class)co 5957 Basecbs 12907 +gcplusg 12984 0gc0g 13163 Grpcgrp 13407 invgcminusg 13408 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-inn 9057 df-2 9115 df-ndx 12910 df-slot 12911 df-base 12913 df-plusg 12997 df-0g 13165 df-mgm 13263 df-sgrp 13309 df-mnd 13324 df-grp 13410 df-minusg 13411 |
| This theorem is referenced by: grpinv11 13476 grpinvnz 13478 grpsubinv 13480 grpinvsub 13489 grpsubeq0 13493 grpnpcan 13499 mulgneg 13551 mulgnegneg 13552 mulginvinv 13559 mulgdir 13565 mulgass 13570 eqger 13635 ablsub2inv 13722 invghm 13740 rngm2neg 13786 ringm2neg 13892 unitinvinv 13961 unitnegcl 13967 lspsnneg 14257 |
| Copyright terms: Public domain | W3C validator |