| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imasmnd | GIF version | ||
| Description: The image structure of a monoid is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| imasmnd.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
| imasmnd.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| imasmnd.p | ⊢ + = (+g‘𝑅) |
| imasmnd.f | ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
| imasmnd.e | ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) |
| imasmnd.r | ⊢ (𝜑 → 𝑅 ∈ Mnd) |
| imasmnd.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| imasmnd | ⊢ (𝜑 → (𝑈 ∈ Mnd ∧ (𝐹‘ 0 ) = (0g‘𝑈))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasmnd.u | . 2 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
| 2 | imasmnd.v | . 2 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
| 3 | imasmnd.p | . 2 ⊢ + = (+g‘𝑅) | |
| 4 | imasmnd.f | . 2 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | |
| 5 | imasmnd.e | . 2 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) | |
| 6 | imasmnd.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Mnd) | |
| 7 | 6 | 3ad2ant1 1023 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑅 ∈ Mnd) |
| 8 | simp2 1003 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑥 ∈ 𝑉) | |
| 9 | 2 | 3ad2ant1 1023 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑉 = (Base‘𝑅)) |
| 10 | 8, 9 | eleqtrd 2288 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑥 ∈ (Base‘𝑅)) |
| 11 | simp3 1004 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑦 ∈ 𝑉) | |
| 12 | 11, 9 | eleqtrd 2288 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑦 ∈ (Base‘𝑅)) |
| 13 | eqid 2209 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 14 | 13, 3 | mndcl 13422 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 + 𝑦) ∈ (Base‘𝑅)) |
| 15 | 7, 10, 12, 14 | syl3anc 1252 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥 + 𝑦) ∈ (Base‘𝑅)) |
| 16 | 15, 9 | eleqtrrd 2289 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥 + 𝑦) ∈ 𝑉) |
| 17 | 6 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑅 ∈ Mnd) |
| 18 | 10 | 3adant3r3 1219 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑥 ∈ (Base‘𝑅)) |
| 19 | 12 | 3adant3r3 1219 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑦 ∈ (Base‘𝑅)) |
| 20 | simpr3 1010 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑧 ∈ 𝑉) | |
| 21 | 2 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑉 = (Base‘𝑅)) |
| 22 | 20, 21 | eleqtrd 2288 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑧 ∈ (Base‘𝑅)) |
| 23 | 13, 3 | mndass 13423 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 24 | 17, 18, 19, 22, 23 | syl13anc 1254 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 25 | 24 | fveq2d 5607 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝐹‘((𝑥 + 𝑦) + 𝑧)) = (𝐹‘(𝑥 + (𝑦 + 𝑧)))) |
| 26 | imasmnd.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 27 | 13, 26 | mndidcl 13429 | . . . 4 ⊢ (𝑅 ∈ Mnd → 0 ∈ (Base‘𝑅)) |
| 28 | 6, 27 | syl 14 | . . 3 ⊢ (𝜑 → 0 ∈ (Base‘𝑅)) |
| 29 | 28, 2 | eleqtrrd 2289 | . 2 ⊢ (𝜑 → 0 ∈ 𝑉) |
| 30 | 2 | eleq2d 2279 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑉 ↔ 𝑥 ∈ (Base‘𝑅))) |
| 31 | 30 | biimpa 296 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ (Base‘𝑅)) |
| 32 | 13, 3, 26 | mndlid 13434 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → ( 0 + 𝑥) = 𝑥) |
| 33 | 6, 31, 32 | syl2an2r 597 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ( 0 + 𝑥) = 𝑥) |
| 34 | 33 | fveq2d 5607 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝐹‘( 0 + 𝑥)) = (𝐹‘𝑥)) |
| 35 | 13, 3, 26 | mndrid 13435 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥 + 0 ) = 𝑥) |
| 36 | 6, 31, 35 | syl2an2r 597 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝑥 + 0 ) = 𝑥) |
| 37 | 36 | fveq2d 5607 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝐹‘(𝑥 + 0 )) = (𝐹‘𝑥)) |
| 38 | 1, 2, 3, 4, 5, 6, 16, 25, 29, 34, 37 | imasmnd2 13451 | 1 ⊢ (𝜑 → (𝑈 ∈ Mnd ∧ (𝐹‘ 0 ) = (0g‘𝑈))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 983 = wceq 1375 ∈ wcel 2180 –onto→wfo 5292 ‘cfv 5294 (class class class)co 5974 Basecbs 12998 +gcplusg 13076 0gc0g 13255 “s cimas 13298 Mndcmnd 13415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-i2m1 8072 ax-0lt1 8073 ax-0id 8075 ax-rnegex 8076 ax-pre-ltirr 8079 ax-pre-lttrn 8081 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-tp 3654 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-pnf 8151 df-mnf 8152 df-ltxr 8154 df-inn 9079 df-2 9137 df-3 9138 df-ndx 13001 df-slot 13002 df-base 13004 df-plusg 13089 df-mulr 13090 df-0g 13257 df-iimas 13301 df-mgm 13355 df-sgrp 13401 df-mnd 13416 |
| This theorem is referenced by: imasmndf1 13453 |
| Copyright terms: Public domain | W3C validator |