| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imasmnd | GIF version | ||
| Description: The image structure of a monoid is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| imasmnd.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
| imasmnd.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| imasmnd.p | ⊢ + = (+g‘𝑅) |
| imasmnd.f | ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
| imasmnd.e | ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) |
| imasmnd.r | ⊢ (𝜑 → 𝑅 ∈ Mnd) |
| imasmnd.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| imasmnd | ⊢ (𝜑 → (𝑈 ∈ Mnd ∧ (𝐹‘ 0 ) = (0g‘𝑈))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasmnd.u | . 2 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
| 2 | imasmnd.v | . 2 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
| 3 | imasmnd.p | . 2 ⊢ + = (+g‘𝑅) | |
| 4 | imasmnd.f | . 2 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | |
| 5 | imasmnd.e | . 2 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) | |
| 6 | imasmnd.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Mnd) | |
| 7 | 6 | 3ad2ant1 1042 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑅 ∈ Mnd) |
| 8 | simp2 1022 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑥 ∈ 𝑉) | |
| 9 | 2 | 3ad2ant1 1042 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑉 = (Base‘𝑅)) |
| 10 | 8, 9 | eleqtrd 2308 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑥 ∈ (Base‘𝑅)) |
| 11 | simp3 1023 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑦 ∈ 𝑉) | |
| 12 | 11, 9 | eleqtrd 2308 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑦 ∈ (Base‘𝑅)) |
| 13 | eqid 2229 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 14 | 13, 3 | mndcl 13464 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 + 𝑦) ∈ (Base‘𝑅)) |
| 15 | 7, 10, 12, 14 | syl3anc 1271 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥 + 𝑦) ∈ (Base‘𝑅)) |
| 16 | 15, 9 | eleqtrrd 2309 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥 + 𝑦) ∈ 𝑉) |
| 17 | 6 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑅 ∈ Mnd) |
| 18 | 10 | 3adant3r3 1238 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑥 ∈ (Base‘𝑅)) |
| 19 | 12 | 3adant3r3 1238 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑦 ∈ (Base‘𝑅)) |
| 20 | simpr3 1029 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑧 ∈ 𝑉) | |
| 21 | 2 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑉 = (Base‘𝑅)) |
| 22 | 20, 21 | eleqtrd 2308 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑧 ∈ (Base‘𝑅)) |
| 23 | 13, 3 | mndass 13465 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 24 | 17, 18, 19, 22, 23 | syl13anc 1273 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 25 | 24 | fveq2d 5633 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝐹‘((𝑥 + 𝑦) + 𝑧)) = (𝐹‘(𝑥 + (𝑦 + 𝑧)))) |
| 26 | imasmnd.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 27 | 13, 26 | mndidcl 13471 | . . . 4 ⊢ (𝑅 ∈ Mnd → 0 ∈ (Base‘𝑅)) |
| 28 | 6, 27 | syl 14 | . . 3 ⊢ (𝜑 → 0 ∈ (Base‘𝑅)) |
| 29 | 28, 2 | eleqtrrd 2309 | . 2 ⊢ (𝜑 → 0 ∈ 𝑉) |
| 30 | 2 | eleq2d 2299 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑉 ↔ 𝑥 ∈ (Base‘𝑅))) |
| 31 | 30 | biimpa 296 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ (Base‘𝑅)) |
| 32 | 13, 3, 26 | mndlid 13476 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → ( 0 + 𝑥) = 𝑥) |
| 33 | 6, 31, 32 | syl2an2r 597 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ( 0 + 𝑥) = 𝑥) |
| 34 | 33 | fveq2d 5633 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝐹‘( 0 + 𝑥)) = (𝐹‘𝑥)) |
| 35 | 13, 3, 26 | mndrid 13477 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥 + 0 ) = 𝑥) |
| 36 | 6, 31, 35 | syl2an2r 597 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝑥 + 0 ) = 𝑥) |
| 37 | 36 | fveq2d 5633 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝐹‘(𝑥 + 0 )) = (𝐹‘𝑥)) |
| 38 | 1, 2, 3, 4, 5, 6, 16, 25, 29, 34, 37 | imasmnd2 13493 | 1 ⊢ (𝜑 → (𝑈 ∈ Mnd ∧ (𝐹‘ 0 ) = (0g‘𝑈))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 –onto→wfo 5316 ‘cfv 5318 (class class class)co 6007 Basecbs 13040 +gcplusg 13118 0gc0g 13297 “s cimas 13340 Mndcmnd 13457 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-pre-ltirr 8119 ax-pre-lttrn 8121 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-pnf 8191 df-mnf 8192 df-ltxr 8194 df-inn 9119 df-2 9177 df-3 9178 df-ndx 13043 df-slot 13044 df-base 13046 df-plusg 13131 df-mulr 13132 df-0g 13299 df-iimas 13343 df-mgm 13397 df-sgrp 13443 df-mnd 13458 |
| This theorem is referenced by: imasmndf1 13495 |
| Copyright terms: Public domain | W3C validator |