ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasmnd GIF version

Theorem imasmnd 13155
Description: The image structure of a monoid is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
imasmnd.u (𝜑𝑈 = (𝐹s 𝑅))
imasmnd.v (𝜑𝑉 = (Base‘𝑅))
imasmnd.p + = (+g𝑅)
imasmnd.f (𝜑𝐹:𝑉onto𝐵)
imasmnd.e ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
imasmnd.r (𝜑𝑅 ∈ Mnd)
imasmnd.z 0 = (0g𝑅)
Assertion
Ref Expression
imasmnd (𝜑 → (𝑈 ∈ Mnd ∧ (𝐹0 ) = (0g𝑈)))
Distinct variable groups:   𝑞,𝑝, +   𝑎,𝑏,𝑝,𝑞,𝜑   𝑈,𝑎,𝑏,𝑝,𝑞   0 ,𝑝,𝑞   𝐵,𝑝,𝑞   𝐹,𝑎,𝑏,𝑝,𝑞   𝑅,𝑝,𝑞   𝑉,𝑎,𝑏,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎,𝑏)   + (𝑎,𝑏)   𝑅(𝑎,𝑏)   0 (𝑎,𝑏)

Proof of Theorem imasmnd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasmnd.u . 2 (𝜑𝑈 = (𝐹s 𝑅))
2 imasmnd.v . 2 (𝜑𝑉 = (Base‘𝑅))
3 imasmnd.p . 2 + = (+g𝑅)
4 imasmnd.f . 2 (𝜑𝐹:𝑉onto𝐵)
5 imasmnd.e . 2 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
6 imasmnd.r . 2 (𝜑𝑅 ∈ Mnd)
763ad2ant1 1020 . . . 4 ((𝜑𝑥𝑉𝑦𝑉) → 𝑅 ∈ Mnd)
8 simp2 1000 . . . . 5 ((𝜑𝑥𝑉𝑦𝑉) → 𝑥𝑉)
923ad2ant1 1020 . . . . 5 ((𝜑𝑥𝑉𝑦𝑉) → 𝑉 = (Base‘𝑅))
108, 9eleqtrd 2275 . . . 4 ((𝜑𝑥𝑉𝑦𝑉) → 𝑥 ∈ (Base‘𝑅))
11 simp3 1001 . . . . 5 ((𝜑𝑥𝑉𝑦𝑉) → 𝑦𝑉)
1211, 9eleqtrd 2275 . . . 4 ((𝜑𝑥𝑉𝑦𝑉) → 𝑦 ∈ (Base‘𝑅))
13 eqid 2196 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
1413, 3mndcl 13125 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 + 𝑦) ∈ (Base‘𝑅))
157, 10, 12, 14syl3anc 1249 . . 3 ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) ∈ (Base‘𝑅))
1615, 9eleqtrrd 2276 . 2 ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) ∈ 𝑉)
176adantr 276 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑅 ∈ Mnd)
18103adant3r3 1216 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑥 ∈ (Base‘𝑅))
19123adant3r3 1216 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑦 ∈ (Base‘𝑅))
20 simpr3 1007 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑧𝑉)
212adantr 276 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑉 = (Base‘𝑅))
2220, 21eleqtrd 2275 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑧 ∈ (Base‘𝑅))
2313, 3mndass 13126 . . . 4 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
2417, 18, 19, 22, 23syl13anc 1251 . . 3 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
2524fveq2d 5565 . 2 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝐹‘((𝑥 + 𝑦) + 𝑧)) = (𝐹‘(𝑥 + (𝑦 + 𝑧))))
26 imasmnd.z . . . . 5 0 = (0g𝑅)
2713, 26mndidcl 13132 . . . 4 (𝑅 ∈ Mnd → 0 ∈ (Base‘𝑅))
286, 27syl 14 . . 3 (𝜑0 ∈ (Base‘𝑅))
2928, 2eleqtrrd 2276 . 2 (𝜑0𝑉)
302eleq2d 2266 . . . . 5 (𝜑 → (𝑥𝑉𝑥 ∈ (Base‘𝑅)))
3130biimpa 296 . . . 4 ((𝜑𝑥𝑉) → 𝑥 ∈ (Base‘𝑅))
3213, 3, 26mndlid 13137 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → ( 0 + 𝑥) = 𝑥)
336, 31, 32syl2an2r 595 . . 3 ((𝜑𝑥𝑉) → ( 0 + 𝑥) = 𝑥)
3433fveq2d 5565 . 2 ((𝜑𝑥𝑉) → (𝐹‘( 0 + 𝑥)) = (𝐹𝑥))
3513, 3, 26mndrid 13138 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥 + 0 ) = 𝑥)
366, 31, 35syl2an2r 595 . . 3 ((𝜑𝑥𝑉) → (𝑥 + 0 ) = 𝑥)
3736fveq2d 5565 . 2 ((𝜑𝑥𝑉) → (𝐹‘(𝑥 + 0 )) = (𝐹𝑥))
381, 2, 3, 4, 5, 6, 16, 25, 29, 34, 37imasmnd2 13154 1 (𝜑 → (𝑈 ∈ Mnd ∧ (𝐹0 ) = (0g𝑈)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  ontowfo 5257  cfv 5259  (class class class)co 5925  Basecbs 12703  +gcplusg 12780  0gc0g 12958  s cimas 13001  Mndcmnd 13118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-mulr 12794  df-0g 12960  df-iimas 13004  df-mgm 13058  df-sgrp 13104  df-mnd 13119
This theorem is referenced by:  imasmndf1  13156
  Copyright terms: Public domain W3C validator