ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasmnd GIF version

Theorem imasmnd 13452
Description: The image structure of a monoid is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
imasmnd.u (𝜑𝑈 = (𝐹s 𝑅))
imasmnd.v (𝜑𝑉 = (Base‘𝑅))
imasmnd.p + = (+g𝑅)
imasmnd.f (𝜑𝐹:𝑉onto𝐵)
imasmnd.e ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
imasmnd.r (𝜑𝑅 ∈ Mnd)
imasmnd.z 0 = (0g𝑅)
Assertion
Ref Expression
imasmnd (𝜑 → (𝑈 ∈ Mnd ∧ (𝐹0 ) = (0g𝑈)))
Distinct variable groups:   𝑞,𝑝, +   𝑎,𝑏,𝑝,𝑞,𝜑   𝑈,𝑎,𝑏,𝑝,𝑞   0 ,𝑝,𝑞   𝐵,𝑝,𝑞   𝐹,𝑎,𝑏,𝑝,𝑞   𝑅,𝑝,𝑞   𝑉,𝑎,𝑏,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎,𝑏)   + (𝑎,𝑏)   𝑅(𝑎,𝑏)   0 (𝑎,𝑏)

Proof of Theorem imasmnd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasmnd.u . 2 (𝜑𝑈 = (𝐹s 𝑅))
2 imasmnd.v . 2 (𝜑𝑉 = (Base‘𝑅))
3 imasmnd.p . 2 + = (+g𝑅)
4 imasmnd.f . 2 (𝜑𝐹:𝑉onto𝐵)
5 imasmnd.e . 2 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
6 imasmnd.r . 2 (𝜑𝑅 ∈ Mnd)
763ad2ant1 1023 . . . 4 ((𝜑𝑥𝑉𝑦𝑉) → 𝑅 ∈ Mnd)
8 simp2 1003 . . . . 5 ((𝜑𝑥𝑉𝑦𝑉) → 𝑥𝑉)
923ad2ant1 1023 . . . . 5 ((𝜑𝑥𝑉𝑦𝑉) → 𝑉 = (Base‘𝑅))
108, 9eleqtrd 2288 . . . 4 ((𝜑𝑥𝑉𝑦𝑉) → 𝑥 ∈ (Base‘𝑅))
11 simp3 1004 . . . . 5 ((𝜑𝑥𝑉𝑦𝑉) → 𝑦𝑉)
1211, 9eleqtrd 2288 . . . 4 ((𝜑𝑥𝑉𝑦𝑉) → 𝑦 ∈ (Base‘𝑅))
13 eqid 2209 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
1413, 3mndcl 13422 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 + 𝑦) ∈ (Base‘𝑅))
157, 10, 12, 14syl3anc 1252 . . 3 ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) ∈ (Base‘𝑅))
1615, 9eleqtrrd 2289 . 2 ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) ∈ 𝑉)
176adantr 276 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑅 ∈ Mnd)
18103adant3r3 1219 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑥 ∈ (Base‘𝑅))
19123adant3r3 1219 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑦 ∈ (Base‘𝑅))
20 simpr3 1010 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑧𝑉)
212adantr 276 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑉 = (Base‘𝑅))
2220, 21eleqtrd 2288 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑧 ∈ (Base‘𝑅))
2313, 3mndass 13423 . . . 4 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
2417, 18, 19, 22, 23syl13anc 1254 . . 3 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
2524fveq2d 5607 . 2 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝐹‘((𝑥 + 𝑦) + 𝑧)) = (𝐹‘(𝑥 + (𝑦 + 𝑧))))
26 imasmnd.z . . . . 5 0 = (0g𝑅)
2713, 26mndidcl 13429 . . . 4 (𝑅 ∈ Mnd → 0 ∈ (Base‘𝑅))
286, 27syl 14 . . 3 (𝜑0 ∈ (Base‘𝑅))
2928, 2eleqtrrd 2289 . 2 (𝜑0𝑉)
302eleq2d 2279 . . . . 5 (𝜑 → (𝑥𝑉𝑥 ∈ (Base‘𝑅)))
3130biimpa 296 . . . 4 ((𝜑𝑥𝑉) → 𝑥 ∈ (Base‘𝑅))
3213, 3, 26mndlid 13434 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → ( 0 + 𝑥) = 𝑥)
336, 31, 32syl2an2r 597 . . 3 ((𝜑𝑥𝑉) → ( 0 + 𝑥) = 𝑥)
3433fveq2d 5607 . 2 ((𝜑𝑥𝑉) → (𝐹‘( 0 + 𝑥)) = (𝐹𝑥))
3513, 3, 26mndrid 13435 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥 + 0 ) = 𝑥)
366, 31, 35syl2an2r 597 . . 3 ((𝜑𝑥𝑉) → (𝑥 + 0 ) = 𝑥)
3736fveq2d 5607 . 2 ((𝜑𝑥𝑉) → (𝐹‘(𝑥 + 0 )) = (𝐹𝑥))
381, 2, 3, 4, 5, 6, 16, 25, 29, 34, 37imasmnd2 13451 1 (𝜑 → (𝑈 ∈ Mnd ∧ (𝐹0 ) = (0g𝑈)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 983   = wceq 1375  wcel 2180  ontowfo 5292  cfv 5294  (class class class)co 5974  Basecbs 12998  +gcplusg 13076  0gc0g 13255  s cimas 13298  Mndcmnd 13415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-pre-ltirr 8079  ax-pre-lttrn 8081  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-tp 3654  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-pnf 8151  df-mnf 8152  df-ltxr 8154  df-inn 9079  df-2 9137  df-3 9138  df-ndx 13001  df-slot 13002  df-base 13004  df-plusg 13089  df-mulr 13090  df-0g 13257  df-iimas 13301  df-mgm 13355  df-sgrp 13401  df-mnd 13416
This theorem is referenced by:  imasmndf1  13453
  Copyright terms: Public domain W3C validator