ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isrng GIF version

Theorem isrng 13490
Description: The predicate "is a non-unital ring." (Contributed by AV, 6-Jan-2020.)
Hypotheses
Ref Expression
isrng.b 𝐵 = (Base‘𝑅)
isrng.g 𝐺 = (mulGrp‘𝑅)
isrng.p + = (+g𝑅)
isrng.t · = (.r𝑅)
Assertion
Ref Expression
isrng (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ 𝐺 ∈ Smgrp ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
Distinct variable groups:   𝑥,𝐵,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥, · ,𝑦,𝑧   𝑥, + ,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧)

Proof of Theorem isrng
Dummy variables 𝑏 𝑟 𝑡 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5558 . . . . . 6 (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅))
2 isrng.g . . . . . 6 𝐺 = (mulGrp‘𝑅)
31, 2eqtr4di 2247 . . . . 5 (𝑟 = 𝑅 → (mulGrp‘𝑟) = 𝐺)
43eleq1d 2265 . . . 4 (𝑟 = 𝑅 → ((mulGrp‘𝑟) ∈ Smgrp ↔ 𝐺 ∈ Smgrp))
5 basfn 12736 . . . . . . 7 Base Fn V
6 vex 2766 . . . . . . 7 𝑟 ∈ V
7 funfvex 5575 . . . . . . . 8 ((Fun Base ∧ 𝑟 ∈ dom Base) → (Base‘𝑟) ∈ V)
87funfni 5358 . . . . . . 7 ((Base Fn V ∧ 𝑟 ∈ V) → (Base‘𝑟) ∈ V)
95, 6, 8mp2an 426 . . . . . 6 (Base‘𝑟) ∈ V
109a1i 9 . . . . 5 (𝑟 = 𝑅 → (Base‘𝑟) ∈ V)
11 fveq2 5558 . . . . . 6 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
12 isrng.b . . . . . 6 𝐵 = (Base‘𝑅)
1311, 12eqtr4di 2247 . . . . 5 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
14 plusgslid 12790 . . . . . . . . 9 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
1514slotex 12705 . . . . . . . 8 (𝑟 ∈ V → (+g𝑟) ∈ V)
1615elv 2767 . . . . . . 7 (+g𝑟) ∈ V
1716a1i 9 . . . . . 6 ((𝑟 = 𝑅𝑏 = 𝐵) → (+g𝑟) ∈ V)
18 fveq2 5558 . . . . . . . 8 (𝑟 = 𝑅 → (+g𝑟) = (+g𝑅))
1918adantr 276 . . . . . . 7 ((𝑟 = 𝑅𝑏 = 𝐵) → (+g𝑟) = (+g𝑅))
20 isrng.p . . . . . . 7 + = (+g𝑅)
2119, 20eqtr4di 2247 . . . . . 6 ((𝑟 = 𝑅𝑏 = 𝐵) → (+g𝑟) = + )
22 mulrslid 12809 . . . . . . . . . 10 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
2322slotex 12705 . . . . . . . . 9 (𝑟 ∈ V → (.r𝑟) ∈ V)
2423elv 2767 . . . . . . . 8 (.r𝑟) ∈ V
2524a1i 9 . . . . . . 7 (((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) → (.r𝑟) ∈ V)
26 fveq2 5558 . . . . . . . . . 10 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
2726adantr 276 . . . . . . . . 9 ((𝑟 = 𝑅𝑏 = 𝐵) → (.r𝑟) = (.r𝑅))
2827adantr 276 . . . . . . . 8 (((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) → (.r𝑟) = (.r𝑅))
29 isrng.t . . . . . . . 8 · = (.r𝑅)
3028, 29eqtr4di 2247 . . . . . . 7 (((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) → (.r𝑟) = · )
31 simpllr 534 . . . . . . . 8 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 𝑏 = 𝐵)
32 simpr 110 . . . . . . . . . . . . 13 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 𝑡 = · )
33 eqidd 2197 . . . . . . . . . . . . 13 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 𝑥 = 𝑥)
34 oveq 5928 . . . . . . . . . . . . . 14 (𝑝 = + → (𝑦𝑝𝑧) = (𝑦 + 𝑧))
3534ad2antlr 489 . . . . . . . . . . . . 13 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (𝑦𝑝𝑧) = (𝑦 + 𝑧))
3632, 33, 35oveq123d 5943 . . . . . . . . . . . 12 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (𝑥𝑡(𝑦𝑝𝑧)) = (𝑥 · (𝑦 + 𝑧)))
37 simpr 110 . . . . . . . . . . . . . 14 (((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) → 𝑝 = + )
3837adantr 276 . . . . . . . . . . . . 13 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 𝑝 = + )
39 oveq 5928 . . . . . . . . . . . . . 14 (𝑡 = · → (𝑥𝑡𝑦) = (𝑥 · 𝑦))
4039adantl 277 . . . . . . . . . . . . 13 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (𝑥𝑡𝑦) = (𝑥 · 𝑦))
41 oveq 5928 . . . . . . . . . . . . . 14 (𝑡 = · → (𝑥𝑡𝑧) = (𝑥 · 𝑧))
4241adantl 277 . . . . . . . . . . . . 13 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (𝑥𝑡𝑧) = (𝑥 · 𝑧))
4338, 40, 42oveq123d 5943 . . . . . . . . . . . 12 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
4436, 43eqeq12d 2211 . . . . . . . . . . 11 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ↔ (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))))
45 oveq 5928 . . . . . . . . . . . . . 14 (𝑝 = + → (𝑥𝑝𝑦) = (𝑥 + 𝑦))
4645ad2antlr 489 . . . . . . . . . . . . 13 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (𝑥𝑝𝑦) = (𝑥 + 𝑦))
47 eqidd 2197 . . . . . . . . . . . . 13 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 𝑧 = 𝑧)
4832, 46, 47oveq123d 5943 . . . . . . . . . . . 12 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥 + 𝑦) · 𝑧))
49 oveq 5928 . . . . . . . . . . . . . 14 (𝑡 = · → (𝑦𝑡𝑧) = (𝑦 · 𝑧))
5049adantl 277 . . . . . . . . . . . . 13 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (𝑦𝑡𝑧) = (𝑦 · 𝑧))
5138, 42, 50oveq123d 5943 . . . . . . . . . . . 12 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧)) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
5248, 51eqeq12d 2211 . . . . . . . . . . 11 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧)) ↔ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
5344, 52anbi12d 473 . . . . . . . . . 10 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
5431, 53raleqbidv 2709 . . . . . . . . 9 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (∀𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ∀𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
5531, 54raleqbidv 2709 . . . . . . . 8 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
5631, 55raleqbidv 2709 . . . . . . 7 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (∀𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
5725, 30, 56sbcied2 3027 . . . . . 6 (((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) → ([(.r𝑟) / 𝑡]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
5817, 21, 57sbcied2 3027 . . . . 5 ((𝑟 = 𝑅𝑏 = 𝐵) → ([(+g𝑟) / 𝑝][(.r𝑟) / 𝑡]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
5910, 13, 58sbcied2 3027 . . . 4 (𝑟 = 𝑅 → ([(Base‘𝑟) / 𝑏][(+g𝑟) / 𝑝][(.r𝑟) / 𝑡]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
604, 59anbi12d 473 . . 3 (𝑟 = 𝑅 → (((mulGrp‘𝑟) ∈ Smgrp ∧ [(Base‘𝑟) / 𝑏][(+g𝑟) / 𝑝][(.r𝑟) / 𝑡]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧)))) ↔ (𝐺 ∈ Smgrp ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))))
61 df-rng 13489 . . 3 Rng = {𝑟 ∈ Abel ∣ ((mulGrp‘𝑟) ∈ Smgrp ∧ [(Base‘𝑟) / 𝑏][(+g𝑟) / 𝑝][(.r𝑟) / 𝑡]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))))}
6260, 61elrab2 2923 . 2 (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ (𝐺 ∈ Smgrp ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))))
63 3anass 984 . 2 ((𝑅 ∈ Abel ∧ 𝐺 ∈ Smgrp ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))) ↔ (𝑅 ∈ Abel ∧ (𝐺 ∈ Smgrp ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))))
6462, 63bitr4i 187 1 (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ 𝐺 ∈ Smgrp ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  wral 2475  Vcvv 2763  [wsbc 2989   Fn wfn 5253  cfv 5258  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  .rcmulr 12756  Smgrpcsgrp 13044  Abelcabl 13415  mulGrpcmgp 13476  Rngcrng 13488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-ov 5925  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-mulr 12769  df-rng 13489
This theorem is referenced by:  rngabl  13491  rngmgp  13492  rngdi  13496  rngdir  13497  isrngd  13509  rngpropd  13511  ringrng  13592  rnglidlrng  14054
  Copyright terms: Public domain W3C validator