![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulext | GIF version |
Description: Strong extensionality for multiplication. Given excluded middle, apartness would be equivalent to negated equality and this would follow readily (for all operations) from oveq12 5735. For us, it is proved a different way. (Contributed by Jim Kingdon, 23-Feb-2020.) |
Ref | Expression |
---|---|
mulext | ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐵) # (𝐶 · 𝐷) → (𝐴 # 𝐶 ∨ 𝐵 # 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 501 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐴 ∈ ℂ) | |
2 | simplr 502 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐵 ∈ ℂ) | |
3 | 1, 2 | mulcld 7704 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴 · 𝐵) ∈ ℂ) |
4 | simprl 503 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐶 ∈ ℂ) | |
5 | simprr 504 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐷 ∈ ℂ) | |
6 | 4, 5 | mulcld 7704 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐶 · 𝐷) ∈ ℂ) |
7 | 4, 2 | mulcld 7704 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐶 · 𝐵) ∈ ℂ) |
8 | apcotr 8281 | . . 3 ⊢ (((𝐴 · 𝐵) ∈ ℂ ∧ (𝐶 · 𝐷) ∈ ℂ ∧ (𝐶 · 𝐵) ∈ ℂ) → ((𝐴 · 𝐵) # (𝐶 · 𝐷) → ((𝐴 · 𝐵) # (𝐶 · 𝐵) ∨ (𝐶 · 𝐷) # (𝐶 · 𝐵)))) | |
9 | 3, 6, 7, 8 | syl3anc 1197 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐵) # (𝐶 · 𝐷) → ((𝐴 · 𝐵) # (𝐶 · 𝐵) ∨ (𝐶 · 𝐷) # (𝐶 · 𝐵)))) |
10 | mulext1 8286 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) # (𝐶 · 𝐵) → 𝐴 # 𝐶)) | |
11 | 1, 4, 2, 10 | syl3anc 1197 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐵) # (𝐶 · 𝐵) → 𝐴 # 𝐶)) |
12 | mulext2 8287 | . . . . 5 ⊢ ((𝐷 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐶 · 𝐷) # (𝐶 · 𝐵) → 𝐷 # 𝐵)) | |
13 | 5, 2, 4, 12 | syl3anc 1197 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐶 · 𝐷) # (𝐶 · 𝐵) → 𝐷 # 𝐵)) |
14 | apsym 8280 | . . . . 5 ⊢ ((𝐷 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐷 # 𝐵 ↔ 𝐵 # 𝐷)) | |
15 | 5, 2, 14 | syl2anc 406 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐷 # 𝐵 ↔ 𝐵 # 𝐷)) |
16 | 13, 15 | sylibd 148 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐶 · 𝐷) # (𝐶 · 𝐵) → 𝐵 # 𝐷)) |
17 | 11, 16 | orim12d 758 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐵) # (𝐶 · 𝐵) ∨ (𝐶 · 𝐷) # (𝐶 · 𝐵)) → (𝐴 # 𝐶 ∨ 𝐵 # 𝐷))) |
18 | 9, 17 | syld 45 | 1 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐵) # (𝐶 · 𝐷) → (𝐴 # 𝐶 ∨ 𝐵 # 𝐷))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 680 ∈ wcel 1461 class class class wbr 3893 (class class class)co 5726 ℂcc 7539 · cmul 7546 # cap 8255 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-pow 4056 ax-pr 4089 ax-un 4313 ax-setind 4410 ax-cnex 7630 ax-resscn 7631 ax-1cn 7632 ax-1re 7633 ax-icn 7634 ax-addcl 7635 ax-addrcl 7636 ax-mulcl 7637 ax-mulrcl 7638 ax-addcom 7639 ax-mulcom 7640 ax-addass 7641 ax-mulass 7642 ax-distr 7643 ax-i2m1 7644 ax-0lt1 7645 ax-1rid 7646 ax-0id 7647 ax-rnegex 7648 ax-precex 7649 ax-cnre 7650 ax-pre-ltirr 7651 ax-pre-ltwlin 7652 ax-pre-lttrn 7653 ax-pre-apti 7654 ax-pre-ltadd 7655 ax-pre-mulgt0 7656 ax-pre-mulext 7657 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-fal 1318 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ne 2281 df-nel 2376 df-ral 2393 df-rex 2394 df-reu 2395 df-rab 2397 df-v 2657 df-sbc 2877 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-br 3894 df-opab 3948 df-id 4173 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-iota 5044 df-fun 5081 df-fv 5087 df-riota 5682 df-ov 5729 df-oprab 5730 df-mpo 5731 df-pnf 7720 df-mnf 7721 df-ltxr 7723 df-sub 7852 df-neg 7853 df-reap 8249 df-ap 8256 |
This theorem is referenced by: mulap0r 8289 lt2msq 8548 absext 10721 |
Copyright terms: Public domain | W3C validator |