ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  binom2sub Unicode version

Theorem binom2sub 10564
Description: Expand the square of a subtraction. (Contributed by Scott Fenton, 10-Jun-2013.)
Assertion
Ref Expression
binom2sub  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B ) ^ 2 )  =  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) ) )

Proof of Theorem binom2sub
StepHypRef Expression
1 negcl 8094 . . . 4  |-  ( B  e.  CC  ->  -u B  e.  CC )
2 binom2 10562 . . . 4  |-  ( ( A  e.  CC  /\  -u B  e.  CC )  ->  ( ( A  +  -u B ) ^
2 )  =  ( ( ( A ^
2 )  +  ( 2  x.  ( A  x.  -u B ) ) )  +  ( -u B ^ 2 ) ) )
31, 2sylan2 284 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  -u B ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  -u B ) ) )  +  ( -u B ^ 2 ) ) )
4 negsub 8142 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  -u B )  =  ( A  -  B ) )
54oveq1d 5856 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  -u B ) ^ 2 )  =  ( ( A  -  B ) ^ 2 ) )
63, 5eqtr3d 2200 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  -u B ) ) )  +  (
-u B ^ 2 ) )  =  ( ( A  -  B
) ^ 2 ) )
7 mulneg2 8290 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  -u B
)  =  -u ( A  x.  B )
)
87oveq2d 5857 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  ( A  x.  -u B ) )  =  ( 2  x.  -u ( A  x.  B ) ) )
9 2cn 8924 . . . . . . 7  |-  2  e.  CC
10 mulcl 7876 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
11 mulneg2 8290 . . . . . . 7  |-  ( ( 2  e.  CC  /\  ( A  x.  B
)  e.  CC )  ->  ( 2  x.  -u ( A  x.  B
) )  =  -u ( 2  x.  ( A  x.  B )
) )
129, 10, 11sylancr 411 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  -u ( A  x.  B )
)  =  -u (
2  x.  ( A  x.  B ) ) )
138, 12eqtr2d 2199 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
-u ( 2  x.  ( A  x.  B
) )  =  ( 2  x.  ( A  x.  -u B ) ) )
1413oveq2d 5857 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  +  -u ( 2  x.  ( A  x.  B )
) )  =  ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  -u B ) ) ) )
15 sqcl 10512 . . . . . 6  |-  ( A  e.  CC  ->  ( A ^ 2 )  e.  CC )
1615adantr 274 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 2 )  e.  CC )
17 mulcl 7876 . . . . . 6  |-  ( ( 2  e.  CC  /\  ( A  x.  B
)  e.  CC )  ->  ( 2  x.  ( A  x.  B
) )  e.  CC )
189, 10, 17sylancr 411 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  ( A  x.  B )
)  e.  CC )
1916, 18negsubd 8211 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  +  -u ( 2  x.  ( A  x.  B )
) )  =  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  B ) ) ) )
2014, 19eqtr3d 2200 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  +  ( 2  x.  ( A  x.  -u B ) ) )  =  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  B
) ) ) )
21 sqneg 10510 . . . 4  |-  ( B  e.  CC  ->  ( -u B ^ 2 )  =  ( B ^
2 ) )
2221adantl 275 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u B ^
2 )  =  ( B ^ 2 ) )
2320, 22oveq12d 5859 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  -u B ) ) )  +  (
-u B ^ 2 ) )  =  ( ( ( A ^
2 )  -  (
2  x.  ( A  x.  B ) ) )  +  ( B ^ 2 ) ) )
246, 23eqtr3d 2200 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B ) ^ 2 )  =  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136  (class class class)co 5841   CCcc 7747    + caddc 7752    x. cmul 7754    - cmin 8065   -ucneg 8066   2c2 8904   ^cexp 10450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-iinf 4564  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-if 3520  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-id 4270  df-po 4273  df-iso 4274  df-iord 4343  df-on 4345  df-ilim 4346  df-suc 4348  df-iom 4567  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-recs 6269  df-frec 6355  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565  df-inn 8854  df-2 8912  df-n0 9111  df-z 9188  df-uz 9463  df-seqfrec 10377  df-exp 10451
This theorem is referenced by:  binom2sub1  10565  binom2subi  10566  resqrexlemover  10948  resqrexlemcalc1  10952  amgm2  11056  bdtrilem  11176  pythagtriplem1  12193  pythagtriplem14  12205  tangtx  13359
  Copyright terms: Public domain W3C validator