ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  binom2sub Unicode version

Theorem binom2sub 10745
Description: Expand the square of a subtraction. (Contributed by Scott Fenton, 10-Jun-2013.)
Assertion
Ref Expression
binom2sub  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B ) ^ 2 )  =  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) ) )

Proof of Theorem binom2sub
StepHypRef Expression
1 negcl 8226 . . . 4  |-  ( B  e.  CC  ->  -u B  e.  CC )
2 binom2 10743 . . . 4  |-  ( ( A  e.  CC  /\  -u B  e.  CC )  ->  ( ( A  +  -u B ) ^
2 )  =  ( ( ( A ^
2 )  +  ( 2  x.  ( A  x.  -u B ) ) )  +  ( -u B ^ 2 ) ) )
31, 2sylan2 286 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  -u B ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  -u B ) ) )  +  ( -u B ^ 2 ) ) )
4 negsub 8274 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  -u B )  =  ( A  -  B ) )
54oveq1d 5937 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  -u B ) ^ 2 )  =  ( ( A  -  B ) ^ 2 ) )
63, 5eqtr3d 2231 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  -u B ) ) )  +  (
-u B ^ 2 ) )  =  ( ( A  -  B
) ^ 2 ) )
7 mulneg2 8422 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  -u B
)  =  -u ( A  x.  B )
)
87oveq2d 5938 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  ( A  x.  -u B ) )  =  ( 2  x.  -u ( A  x.  B ) ) )
9 2cn 9061 . . . . . . 7  |-  2  e.  CC
10 mulcl 8006 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
11 mulneg2 8422 . . . . . . 7  |-  ( ( 2  e.  CC  /\  ( A  x.  B
)  e.  CC )  ->  ( 2  x.  -u ( A  x.  B
) )  =  -u ( 2  x.  ( A  x.  B )
) )
129, 10, 11sylancr 414 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  -u ( A  x.  B )
)  =  -u (
2  x.  ( A  x.  B ) ) )
138, 12eqtr2d 2230 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
-u ( 2  x.  ( A  x.  B
) )  =  ( 2  x.  ( A  x.  -u B ) ) )
1413oveq2d 5938 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  +  -u ( 2  x.  ( A  x.  B )
) )  =  ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  -u B ) ) ) )
15 sqcl 10692 . . . . . 6  |-  ( A  e.  CC  ->  ( A ^ 2 )  e.  CC )
1615adantr 276 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 2 )  e.  CC )
17 mulcl 8006 . . . . . 6  |-  ( ( 2  e.  CC  /\  ( A  x.  B
)  e.  CC )  ->  ( 2  x.  ( A  x.  B
) )  e.  CC )
189, 10, 17sylancr 414 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  ( A  x.  B )
)  e.  CC )
1916, 18negsubd 8343 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  +  -u ( 2  x.  ( A  x.  B )
) )  =  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  B ) ) ) )
2014, 19eqtr3d 2231 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  +  ( 2  x.  ( A  x.  -u B ) ) )  =  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  B
) ) ) )
21 sqneg 10690 . . . 4  |-  ( B  e.  CC  ->  ( -u B ^ 2 )  =  ( B ^
2 ) )
2221adantl 277 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u B ^
2 )  =  ( B ^ 2 ) )
2320, 22oveq12d 5940 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  -u B ) ) )  +  (
-u B ^ 2 ) )  =  ( ( ( A ^
2 )  -  (
2  x.  ( A  x.  B ) ) )  +  ( B ^ 2 ) ) )
246, 23eqtr3d 2231 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B ) ^ 2 )  =  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167  (class class class)co 5922   CCcc 7877    + caddc 7882    x. cmul 7884    - cmin 8197   -ucneg 8198   2c2 9041   ^cexp 10630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-seqfrec 10540  df-exp 10631
This theorem is referenced by:  binom2sub1  10746  binom2subi  10747  resqrexlemover  11175  resqrexlemcalc1  11179  amgm2  11283  bdtrilem  11404  pythagtriplem1  12434  pythagtriplem14  12446  tangtx  15074
  Copyright terms: Public domain W3C validator