Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > binom2sub | Unicode version |
Description: Expand the square of a subtraction. (Contributed by Scott Fenton, 10-Jun-2013.) |
Ref | Expression |
---|---|
binom2sub |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negcl 8079 | . . . 4 | |
2 | binom2 10538 | . . . 4 | |
3 | 1, 2 | sylan2 284 | . . 3 |
4 | negsub 8127 | . . . 4 | |
5 | 4 | oveq1d 5841 | . . 3 |
6 | 3, 5 | eqtr3d 2192 | . 2 |
7 | mulneg2 8275 | . . . . . . 7 | |
8 | 7 | oveq2d 5842 | . . . . . 6 |
9 | 2cn 8909 | . . . . . . 7 | |
10 | mulcl 7861 | . . . . . . 7 | |
11 | mulneg2 8275 | . . . . . . 7 | |
12 | 9, 10, 11 | sylancr 411 | . . . . . 6 |
13 | 8, 12 | eqtr2d 2191 | . . . . 5 |
14 | 13 | oveq2d 5842 | . . . 4 |
15 | sqcl 10489 | . . . . . 6 | |
16 | 15 | adantr 274 | . . . . 5 |
17 | mulcl 7861 | . . . . . 6 | |
18 | 9, 10, 17 | sylancr 411 | . . . . 5 |
19 | 16, 18 | negsubd 8196 | . . . 4 |
20 | 14, 19 | eqtr3d 2192 | . . 3 |
21 | sqneg 10487 | . . . 4 | |
22 | 21 | adantl 275 | . . 3 |
23 | 20, 22 | oveq12d 5844 | . 2 |
24 | 6, 23 | eqtr3d 2192 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1335 wcel 2128 (class class class)co 5826 cc 7732 caddc 7737 cmul 7739 cmin 8050 cneg 8051 c2 8889 cexp 10427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4081 ax-sep 4084 ax-nul 4092 ax-pow 4137 ax-pr 4171 ax-un 4395 ax-setind 4498 ax-iinf 4549 ax-cnex 7825 ax-resscn 7826 ax-1cn 7827 ax-1re 7828 ax-icn 7829 ax-addcl 7830 ax-addrcl 7831 ax-mulcl 7832 ax-mulrcl 7833 ax-addcom 7834 ax-mulcom 7835 ax-addass 7836 ax-mulass 7837 ax-distr 7838 ax-i2m1 7839 ax-0lt1 7840 ax-1rid 7841 ax-0id 7842 ax-rnegex 7843 ax-precex 7844 ax-cnre 7845 ax-pre-ltirr 7846 ax-pre-ltwlin 7847 ax-pre-lttrn 7848 ax-pre-apti 7849 ax-pre-ltadd 7850 ax-pre-mulgt0 7851 ax-pre-mulext 7852 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3396 df-if 3507 df-pw 3546 df-sn 3567 df-pr 3568 df-op 3570 df-uni 3775 df-int 3810 df-iun 3853 df-br 3968 df-opab 4028 df-mpt 4029 df-tr 4065 df-id 4255 df-po 4258 df-iso 4259 df-iord 4328 df-on 4330 df-ilim 4331 df-suc 4333 df-iom 4552 df-xp 4594 df-rel 4595 df-cnv 4596 df-co 4597 df-dm 4598 df-rn 4599 df-res 4600 df-ima 4601 df-iota 5137 df-fun 5174 df-fn 5175 df-f 5176 df-f1 5177 df-fo 5178 df-f1o 5179 df-fv 5180 df-riota 5782 df-ov 5829 df-oprab 5830 df-mpo 5831 df-1st 6090 df-2nd 6091 df-recs 6254 df-frec 6340 df-pnf 7916 df-mnf 7917 df-xr 7918 df-ltxr 7919 df-le 7920 df-sub 8052 df-neg 8053 df-reap 8454 df-ap 8461 df-div 8550 df-inn 8839 df-2 8897 df-n0 9096 df-z 9173 df-uz 9445 df-seqfrec 10354 df-exp 10428 |
This theorem is referenced by: binom2sub1 10541 binom2subi 10542 resqrexlemover 10921 resqrexlemcalc1 10925 amgm2 11029 bdtrilem 11149 pythagtriplem1 12155 pythagtriplem14 12167 tangtx 13229 |
Copyright terms: Public domain | W3C validator |