ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reneg Unicode version

Theorem reneg 10800
Description: Real part of negative. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
reneg  |-  ( A  e.  CC  ->  (
Re `  -u A )  =  -u ( Re `  A ) )

Proof of Theorem reneg
StepHypRef Expression
1 recl 10785 . . . . . 6  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
21recnd 7919 . . . . 5  |-  ( A  e.  CC  ->  (
Re `  A )  e.  CC )
3 ax-icn 7840 . . . . . 6  |-  _i  e.  CC
4 imcl 10786 . . . . . . 7  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
54recnd 7919 . . . . . 6  |-  ( A  e.  CC  ->  (
Im `  A )  e.  CC )
6 mulcl 7872 . . . . . 6  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
73, 5, 6sylancr 411 . . . . 5  |-  ( A  e.  CC  ->  (
_i  x.  ( Im `  A ) )  e.  CC )
82, 7negdid 8214 . . . 4  |-  ( A  e.  CC  ->  -u (
( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  =  ( -u (
Re `  A )  +  -u ( _i  x.  ( Im `  A ) ) ) )
9 replim 10791 . . . . 5  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
109negeqd 8085 . . . 4  |-  ( A  e.  CC  ->  -u A  =  -u ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
11 mulneg2 8286 . . . . . 6  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  -u (
Im `  A )
)  =  -u (
_i  x.  ( Im `  A ) ) )
123, 5, 11sylancr 411 . . . . 5  |-  ( A  e.  CC  ->  (
_i  x.  -u ( Im
`  A ) )  =  -u ( _i  x.  ( Im `  A ) ) )
1312oveq2d 5853 . . . 4  |-  ( A  e.  CC  ->  ( -u ( Re `  A
)  +  ( _i  x.  -u ( Im `  A ) ) )  =  ( -u (
Re `  A )  +  -u ( _i  x.  ( Im `  A ) ) ) )
148, 10, 133eqtr4d 2207 . . 3  |-  ( A  e.  CC  ->  -u A  =  ( -u (
Re `  A )  +  ( _i  x.  -u ( Im `  A
) ) ) )
1514fveq2d 5485 . 2  |-  ( A  e.  CC  ->  (
Re `  -u A )  =  ( Re `  ( -u ( Re `  A )  +  ( _i  x.  -u (
Im `  A )
) ) ) )
161renegcld 8270 . . 3  |-  ( A  e.  CC  ->  -u (
Re `  A )  e.  RR )
174renegcld 8270 . . 3  |-  ( A  e.  CC  ->  -u (
Im `  A )  e.  RR )
18 crre 10789 . . 3  |-  ( (
-u ( Re `  A )  e.  RR  /\  -u ( Im `  A
)  e.  RR )  ->  ( Re `  ( -u ( Re `  A )  +  ( _i  x.  -u (
Im `  A )
) ) )  = 
-u ( Re `  A ) )
1916, 17, 18syl2anc 409 . 2  |-  ( A  e.  CC  ->  (
Re `  ( -u (
Re `  A )  +  ( _i  x.  -u ( Im `  A
) ) ) )  =  -u ( Re `  A ) )
2015, 19eqtrd 2197 1  |-  ( A  e.  CC  ->  (
Re `  -u A )  =  -u ( Re `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1342    e. wcel 2135   ` cfv 5183  (class class class)co 5837   CCcc 7743   RRcr 7744   _ici 7747    + caddc 7748    x. cmul 7750   -ucneg 8062   Recre 10772   Imcim 10773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4095  ax-pow 4148  ax-pr 4182  ax-un 4406  ax-setind 4509  ax-cnex 7836  ax-resscn 7837  ax-1cn 7838  ax-1re 7839  ax-icn 7840  ax-addcl 7841  ax-addrcl 7842  ax-mulcl 7843  ax-mulrcl 7844  ax-addcom 7845  ax-mulcom 7846  ax-addass 7847  ax-mulass 7848  ax-distr 7849  ax-i2m1 7850  ax-0lt1 7851  ax-1rid 7852  ax-0id 7853  ax-rnegex 7854  ax-precex 7855  ax-cnre 7856  ax-pre-ltirr 7857  ax-pre-ltwlin 7858  ax-pre-lttrn 7859  ax-pre-apti 7860  ax-pre-ltadd 7861  ax-pre-mulgt0 7862  ax-pre-mulext 7863
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2724  df-sbc 2948  df-dif 3114  df-un 3116  df-in 3118  df-ss 3125  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-uni 3785  df-br 3978  df-opab 4039  df-mpt 4040  df-id 4266  df-po 4269  df-iso 4270  df-xp 4605  df-rel 4606  df-cnv 4607  df-co 4608  df-dm 4609  df-rn 4610  df-res 4611  df-ima 4612  df-iota 5148  df-fun 5185  df-fn 5186  df-f 5187  df-fv 5191  df-riota 5793  df-ov 5840  df-oprab 5841  df-mpo 5842  df-pnf 7927  df-mnf 7928  df-xr 7929  df-ltxr 7930  df-le 7931  df-sub 8063  df-neg 8064  df-reap 8465  df-ap 8472  df-div 8561  df-2 8908  df-cj 10774  df-re 10775  df-im 10776
This theorem is referenced by:  resub  10802  cjneg  10822  renegi  10856  renegd  10886
  Copyright terms: Public domain W3C validator