ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reneg Unicode version

Theorem reneg 11379
Description: Real part of negative. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
reneg  |-  ( A  e.  CC  ->  (
Re `  -u A )  =  -u ( Re `  A ) )

Proof of Theorem reneg
StepHypRef Expression
1 recl 11364 . . . . . 6  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
21recnd 8175 . . . . 5  |-  ( A  e.  CC  ->  (
Re `  A )  e.  CC )
3 ax-icn 8094 . . . . . 6  |-  _i  e.  CC
4 imcl 11365 . . . . . . 7  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
54recnd 8175 . . . . . 6  |-  ( A  e.  CC  ->  (
Im `  A )  e.  CC )
6 mulcl 8126 . . . . . 6  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
73, 5, 6sylancr 414 . . . . 5  |-  ( A  e.  CC  ->  (
_i  x.  ( Im `  A ) )  e.  CC )
82, 7negdid 8470 . . . 4  |-  ( A  e.  CC  ->  -u (
( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  =  ( -u (
Re `  A )  +  -u ( _i  x.  ( Im `  A ) ) ) )
9 replim 11370 . . . . 5  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
109negeqd 8341 . . . 4  |-  ( A  e.  CC  ->  -u A  =  -u ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
11 mulneg2 8542 . . . . . 6  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  -u (
Im `  A )
)  =  -u (
_i  x.  ( Im `  A ) ) )
123, 5, 11sylancr 414 . . . . 5  |-  ( A  e.  CC  ->  (
_i  x.  -u ( Im
`  A ) )  =  -u ( _i  x.  ( Im `  A ) ) )
1312oveq2d 6017 . . . 4  |-  ( A  e.  CC  ->  ( -u ( Re `  A
)  +  ( _i  x.  -u ( Im `  A ) ) )  =  ( -u (
Re `  A )  +  -u ( _i  x.  ( Im `  A ) ) ) )
148, 10, 133eqtr4d 2272 . . 3  |-  ( A  e.  CC  ->  -u A  =  ( -u (
Re `  A )  +  ( _i  x.  -u ( Im `  A
) ) ) )
1514fveq2d 5631 . 2  |-  ( A  e.  CC  ->  (
Re `  -u A )  =  ( Re `  ( -u ( Re `  A )  +  ( _i  x.  -u (
Im `  A )
) ) ) )
161renegcld 8526 . . 3  |-  ( A  e.  CC  ->  -u (
Re `  A )  e.  RR )
174renegcld 8526 . . 3  |-  ( A  e.  CC  ->  -u (
Im `  A )  e.  RR )
18 crre 11368 . . 3  |-  ( (
-u ( Re `  A )  e.  RR  /\  -u ( Im `  A
)  e.  RR )  ->  ( Re `  ( -u ( Re `  A )  +  ( _i  x.  -u (
Im `  A )
) ) )  = 
-u ( Re `  A ) )
1916, 17, 18syl2anc 411 . 2  |-  ( A  e.  CC  ->  (
Re `  ( -u (
Re `  A )  +  ( _i  x.  -u ( Im `  A
) ) ) )  =  -u ( Re `  A ) )
2015, 19eqtrd 2262 1  |-  ( A  e.  CC  ->  (
Re `  -u A )  =  -u ( Re `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   ` cfv 5318  (class class class)co 6001   CCcc 7997   RRcr 7998   _ici 8001    + caddc 8002    x. cmul 8004   -ucneg 8318   Recre 11351   Imcim 11352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-2 9169  df-cj 11353  df-re 11354  df-im 11355
This theorem is referenced by:  resub  11381  cjneg  11401  renegi  11435  renegd  11465
  Copyright terms: Public domain W3C validator