ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulneg2 GIF version

Theorem mulneg2 8538
Description: The product with a negative is the negative of the product. (Contributed by NM, 30-Jul-2004.)
Assertion
Ref Expression
mulneg2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · -𝐵) = -(𝐴 · 𝐵))

Proof of Theorem mulneg2
StepHypRef Expression
1 mulneg1 8537 . . 3 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-𝐵 · 𝐴) = -(𝐵 · 𝐴))
21ancoms 268 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐵 · 𝐴) = -(𝐵 · 𝐴))
3 negcl 8342 . . 3 (𝐵 ∈ ℂ → -𝐵 ∈ ℂ)
4 mulcom 8124 . . 3 ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) → (𝐴 · -𝐵) = (-𝐵 · 𝐴))
53, 4sylan2 286 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · -𝐵) = (-𝐵 · 𝐴))
6 mulcom 8124 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
76negeqd 8337 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 · 𝐵) = -(𝐵 · 𝐴))
82, 5, 73eqtr4d 2272 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · -𝐵) = -(𝐴 · 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  (class class class)co 6000  cc 7993   · cmul 8000  -cneg 8314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-setind 4628  ax-resscn 8087  ax-1cn 8088  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-sub 8315  df-neg 8316
This theorem is referenced by:  mulneg12  8539  submul2  8541  mulsub  8543  mulneg2i  8547  mulneg2d  8554  zmulcl  9496  binom2sub  10870  cjreb  11372  recj  11373  reneg  11374  imcj  11381  imneg  11382  ipcnval  11392  cjneg  11396  efexp  12188  efmival  12239  sinsub  12246  cossub  12247  odd2np1  12379  sinperlem  15476  efimpi  15487
  Copyright terms: Public domain W3C validator