Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sqabssub | Unicode version |
Description: Square of absolute value of difference. (Contributed by NM, 21-Jan-2007.) |
Ref | Expression |
---|---|
sqabssub |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cjsub 10824 | . . . 4 | |
2 | 1 | oveq2d 5853 | . . 3 |
3 | cjcl 10780 | . . . . 5 | |
4 | cjcl 10780 | . . . . 5 | |
5 | 3, 4 | anim12i 336 | . . . 4 |
6 | mulsub 8291 | . . . 4 | |
7 | 5, 6 | mpdan 418 | . . 3 |
8 | 2, 7 | eqtrd 2197 | . 2 |
9 | subcl 8089 | . . 3 | |
10 | absvalsq 10985 | . . 3 | |
11 | 9, 10 | syl 14 | . 2 |
12 | absvalsq 10985 | . . . 4 | |
13 | absvalsq 10985 | . . . . 5 | |
14 | mulcom 7874 | . . . . . 6 | |
15 | 4, 14 | mpdan 418 | . . . . 5 |
16 | 13, 15 | eqtrd 2197 | . . . 4 |
17 | 12, 16 | oveqan12d 5856 | . . 3 |
18 | mulcl 7872 | . . . . . 6 | |
19 | 4, 18 | sylan2 284 | . . . . 5 |
20 | 19 | addcjd 10889 | . . . 4 |
21 | cjmul 10817 | . . . . . . 7 | |
22 | 4, 21 | sylan2 284 | . . . . . 6 |
23 | cjcj 10815 | . . . . . . . 8 | |
24 | 23 | adantl 275 | . . . . . . 7 |
25 | 24 | oveq2d 5853 | . . . . . 6 |
26 | 22, 25 | eqtrd 2197 | . . . . 5 |
27 | 26 | oveq2d 5853 | . . . 4 |
28 | 20, 27 | eqtr3d 2199 | . . 3 |
29 | 17, 28 | oveq12d 5855 | . 2 |
30 | 8, 11, 29 | 3eqtr4d 2207 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1342 wcel 2135 cfv 5183 (class class class)co 5837 cc 7743 caddc 7748 cmul 7750 cmin 8061 c2 8900 cexp 10445 ccj 10771 cre 10772 cabs 10929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-coll 4092 ax-sep 4095 ax-nul 4103 ax-pow 4148 ax-pr 4182 ax-un 4406 ax-setind 4509 ax-iinf 4560 ax-cnex 7836 ax-resscn 7837 ax-1cn 7838 ax-1re 7839 ax-icn 7840 ax-addcl 7841 ax-addrcl 7842 ax-mulcl 7843 ax-mulrcl 7844 ax-addcom 7845 ax-mulcom 7846 ax-addass 7847 ax-mulass 7848 ax-distr 7849 ax-i2m1 7850 ax-0lt1 7851 ax-1rid 7852 ax-0id 7853 ax-rnegex 7854 ax-precex 7855 ax-cnre 7856 ax-pre-ltirr 7857 ax-pre-ltwlin 7858 ax-pre-lttrn 7859 ax-pre-apti 7860 ax-pre-ltadd 7861 ax-pre-mulgt0 7862 ax-pre-mulext 7863 ax-arch 7864 ax-caucvg 7865 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 968 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-nel 2430 df-ral 2447 df-rex 2448 df-reu 2449 df-rmo 2450 df-rab 2451 df-v 2724 df-sbc 2948 df-csb 3042 df-dif 3114 df-un 3116 df-in 3118 df-ss 3125 df-nul 3406 df-if 3517 df-pw 3556 df-sn 3577 df-pr 3578 df-op 3580 df-uni 3785 df-int 3820 df-iun 3863 df-br 3978 df-opab 4039 df-mpt 4040 df-tr 4076 df-id 4266 df-po 4269 df-iso 4270 df-iord 4339 df-on 4341 df-ilim 4342 df-suc 4344 df-iom 4563 df-xp 4605 df-rel 4606 df-cnv 4607 df-co 4608 df-dm 4609 df-rn 4610 df-res 4611 df-ima 4612 df-iota 5148 df-fun 5185 df-fn 5186 df-f 5187 df-f1 5188 df-fo 5189 df-f1o 5190 df-fv 5191 df-riota 5793 df-ov 5840 df-oprab 5841 df-mpo 5842 df-1st 6101 df-2nd 6102 df-recs 6265 df-frec 6351 df-pnf 7927 df-mnf 7928 df-xr 7929 df-ltxr 7930 df-le 7931 df-sub 8063 df-neg 8064 df-reap 8465 df-ap 8472 df-div 8561 df-inn 8850 df-2 8908 df-3 8909 df-4 8910 df-n0 9107 df-z 9184 df-uz 9459 df-rp 9582 df-seqfrec 10372 df-exp 10446 df-cj 10774 df-re 10775 df-im 10776 df-rsqrt 10930 df-abs 10931 |
This theorem is referenced by: sqabssubi 11085 |
Copyright terms: Public domain | W3C validator |