ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqabssub Unicode version

Theorem sqabssub 10988
Description: Square of absolute value of difference. (Contributed by NM, 21-Jan-2007.)
Assertion
Ref Expression
sqabssub  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  ( A  -  B )
) ^ 2 )  =  ( ( ( ( abs `  A
) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  -  (
2  x.  ( Re
`  ( A  x.  ( * `  B
) ) ) ) ) )

Proof of Theorem sqabssub
StepHypRef Expression
1 cjsub 10824 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  ( A  -  B )
)  =  ( ( * `  A )  -  ( * `  B ) ) )
21oveq2d 5853 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  x.  (
* `  ( A  -  B ) ) )  =  ( ( A  -  B )  x.  ( ( * `  A )  -  (
* `  B )
) ) )
3 cjcl 10780 . . . . 5  |-  ( A  e.  CC  ->  (
* `  A )  e.  CC )
4 cjcl 10780 . . . . 5  |-  ( B  e.  CC  ->  (
* `  B )  e.  CC )
53, 4anim12i 336 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( * `  A )  e.  CC  /\  ( * `  B
)  e.  CC ) )
6 mulsub 8291 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( * `
 A )  e.  CC  /\  ( * `
 B )  e.  CC ) )  -> 
( ( A  -  B )  x.  (
( * `  A
)  -  ( * `
 B ) ) )  =  ( ( ( A  x.  (
* `  A )
)  +  ( ( * `  B )  x.  B ) )  -  ( ( A  x.  ( * `  B ) )  +  ( ( * `  A )  x.  B
) ) ) )
75, 6mpdan 418 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  x.  (
( * `  A
)  -  ( * `
 B ) ) )  =  ( ( ( A  x.  (
* `  A )
)  +  ( ( * `  B )  x.  B ) )  -  ( ( A  x.  ( * `  B ) )  +  ( ( * `  A )  x.  B
) ) ) )
82, 7eqtrd 2197 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  x.  (
* `  ( A  -  B ) ) )  =  ( ( ( A  x.  ( * `
 A ) )  +  ( ( * `
 B )  x.  B ) )  -  ( ( A  x.  ( * `  B
) )  +  ( ( * `  A
)  x.  B ) ) ) )
9 subcl 8089 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  e.  CC )
10 absvalsq 10985 . . 3  |-  ( ( A  -  B )  e.  CC  ->  (
( abs `  ( A  -  B )
) ^ 2 )  =  ( ( A  -  B )  x.  ( * `  ( A  -  B )
) ) )
119, 10syl 14 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  ( A  -  B )
) ^ 2 )  =  ( ( A  -  B )  x.  ( * `  ( A  -  B )
) ) )
12 absvalsq 10985 . . . 4  |-  ( A  e.  CC  ->  (
( abs `  A
) ^ 2 )  =  ( A  x.  ( * `  A
) ) )
13 absvalsq 10985 . . . . 5  |-  ( B  e.  CC  ->  (
( abs `  B
) ^ 2 )  =  ( B  x.  ( * `  B
) ) )
14 mulcom 7874 . . . . . 6  |-  ( ( B  e.  CC  /\  ( * `  B
)  e.  CC )  ->  ( B  x.  ( * `  B
) )  =  ( ( * `  B
)  x.  B ) )
154, 14mpdan 418 . . . . 5  |-  ( B  e.  CC  ->  ( B  x.  ( * `  B ) )  =  ( ( * `  B )  x.  B
) )
1613, 15eqtrd 2197 . . . 4  |-  ( B  e.  CC  ->  (
( abs `  B
) ^ 2 )  =  ( ( * `
 B )  x.  B ) )
1712, 16oveqan12d 5856 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( abs `  A ) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  =  ( ( A  x.  ( * `  A ) )  +  ( ( * `  B )  x.  B
) ) )
18 mulcl 7872 . . . . . 6  |-  ( ( A  e.  CC  /\  ( * `  B
)  e.  CC )  ->  ( A  x.  ( * `  B
) )  e.  CC )
194, 18sylan2 284 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  (
* `  B )
)  e.  CC )
2019addcjd 10889 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  ( * `  B
) )  +  ( * `  ( A  x.  ( * `  B ) ) ) )  =  ( 2  x.  ( Re `  ( A  x.  (
* `  B )
) ) ) )
21 cjmul 10817 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( * `  B
)  e.  CC )  ->  ( * `  ( A  x.  (
* `  B )
) )  =  ( ( * `  A
)  x.  ( * `
 ( * `  B ) ) ) )
224, 21sylan2 284 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  ( A  x.  ( * `  B ) ) )  =  ( ( * `
 A )  x.  ( * `  (
* `  B )
) ) )
23 cjcj 10815 . . . . . . . 8  |-  ( B  e.  CC  ->  (
* `  ( * `  B ) )  =  B )
2423adantl 275 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  (
* `  B )
)  =  B )
2524oveq2d 5853 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( * `  A )  x.  (
* `  ( * `  B ) ) )  =  ( ( * `
 A )  x.  B ) )
2622, 25eqtrd 2197 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  ( A  x.  ( * `  B ) ) )  =  ( ( * `
 A )  x.  B ) )
2726oveq2d 5853 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  ( * `  B
) )  +  ( * `  ( A  x.  ( * `  B ) ) ) )  =  ( ( A  x.  ( * `
 B ) )  +  ( ( * `
 A )  x.  B ) ) )
2820, 27eqtr3d 2199 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
Re `  ( A  x.  ( * `  B
) ) ) )  =  ( ( A  x.  ( * `  B ) )  +  ( ( * `  A )  x.  B
) ) )
2917, 28oveq12d 5855 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( abs `  A ) ^ 2 )  +  ( ( abs `  B
) ^ 2 ) )  -  ( 2  x.  ( Re `  ( A  x.  (
* `  B )
) ) ) )  =  ( ( ( A  x.  ( * `
 A ) )  +  ( ( * `
 B )  x.  B ) )  -  ( ( A  x.  ( * `  B
) )  +  ( ( * `  A
)  x.  B ) ) ) )
308, 11, 293eqtr4d 2207 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  ( A  -  B )
) ^ 2 )  =  ( ( ( ( abs `  A
) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  -  (
2  x.  ( Re
`  ( A  x.  ( * `  B
) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1342    e. wcel 2135   ` cfv 5183  (class class class)co 5837   CCcc 7743    + caddc 7748    x. cmul 7750    - cmin 8061   2c2 8900   ^cexp 10445   *ccj 10771   Recre 10772   abscabs 10929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4092  ax-sep 4095  ax-nul 4103  ax-pow 4148  ax-pr 4182  ax-un 4406  ax-setind 4509  ax-iinf 4560  ax-cnex 7836  ax-resscn 7837  ax-1cn 7838  ax-1re 7839  ax-icn 7840  ax-addcl 7841  ax-addrcl 7842  ax-mulcl 7843  ax-mulrcl 7844  ax-addcom 7845  ax-mulcom 7846  ax-addass 7847  ax-mulass 7848  ax-distr 7849  ax-i2m1 7850  ax-0lt1 7851  ax-1rid 7852  ax-0id 7853  ax-rnegex 7854  ax-precex 7855  ax-cnre 7856  ax-pre-ltirr 7857  ax-pre-ltwlin 7858  ax-pre-lttrn 7859  ax-pre-apti 7860  ax-pre-ltadd 7861  ax-pre-mulgt0 7862  ax-pre-mulext 7863  ax-arch 7864  ax-caucvg 7865
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2724  df-sbc 2948  df-csb 3042  df-dif 3114  df-un 3116  df-in 3118  df-ss 3125  df-nul 3406  df-if 3517  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-uni 3785  df-int 3820  df-iun 3863  df-br 3978  df-opab 4039  df-mpt 4040  df-tr 4076  df-id 4266  df-po 4269  df-iso 4270  df-iord 4339  df-on 4341  df-ilim 4342  df-suc 4344  df-iom 4563  df-xp 4605  df-rel 4606  df-cnv 4607  df-co 4608  df-dm 4609  df-rn 4610  df-res 4611  df-ima 4612  df-iota 5148  df-fun 5185  df-fn 5186  df-f 5187  df-f1 5188  df-fo 5189  df-f1o 5190  df-fv 5191  df-riota 5793  df-ov 5840  df-oprab 5841  df-mpo 5842  df-1st 6101  df-2nd 6102  df-recs 6265  df-frec 6351  df-pnf 7927  df-mnf 7928  df-xr 7929  df-ltxr 7930  df-le 7931  df-sub 8063  df-neg 8064  df-reap 8465  df-ap 8472  df-div 8561  df-inn 8850  df-2 8908  df-3 8909  df-4 8910  df-n0 9107  df-z 9184  df-uz 9459  df-rp 9582  df-seqfrec 10372  df-exp 10446  df-cj 10774  df-re 10775  df-im 10776  df-rsqrt 10930  df-abs 10931
This theorem is referenced by:  sqabssubi  11085
  Copyright terms: Public domain W3C validator