ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqabssub Unicode version

Theorem sqabssub 10998
Description: Square of absolute value of difference. (Contributed by NM, 21-Jan-2007.)
Assertion
Ref Expression
sqabssub  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  ( A  -  B )
) ^ 2 )  =  ( ( ( ( abs `  A
) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  -  (
2  x.  ( Re
`  ( A  x.  ( * `  B
) ) ) ) ) )

Proof of Theorem sqabssub
StepHypRef Expression
1 cjsub 10834 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  ( A  -  B )
)  =  ( ( * `  A )  -  ( * `  B ) ) )
21oveq2d 5858 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  x.  (
* `  ( A  -  B ) ) )  =  ( ( A  -  B )  x.  ( ( * `  A )  -  (
* `  B )
) ) )
3 cjcl 10790 . . . . 5  |-  ( A  e.  CC  ->  (
* `  A )  e.  CC )
4 cjcl 10790 . . . . 5  |-  ( B  e.  CC  ->  (
* `  B )  e.  CC )
53, 4anim12i 336 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( * `  A )  e.  CC  /\  ( * `  B
)  e.  CC ) )
6 mulsub 8299 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( * `
 A )  e.  CC  /\  ( * `
 B )  e.  CC ) )  -> 
( ( A  -  B )  x.  (
( * `  A
)  -  ( * `
 B ) ) )  =  ( ( ( A  x.  (
* `  A )
)  +  ( ( * `  B )  x.  B ) )  -  ( ( A  x.  ( * `  B ) )  +  ( ( * `  A )  x.  B
) ) ) )
75, 6mpdan 418 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  x.  (
( * `  A
)  -  ( * `
 B ) ) )  =  ( ( ( A  x.  (
* `  A )
)  +  ( ( * `  B )  x.  B ) )  -  ( ( A  x.  ( * `  B ) )  +  ( ( * `  A )  x.  B
) ) ) )
82, 7eqtrd 2198 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  x.  (
* `  ( A  -  B ) ) )  =  ( ( ( A  x.  ( * `
 A ) )  +  ( ( * `
 B )  x.  B ) )  -  ( ( A  x.  ( * `  B
) )  +  ( ( * `  A
)  x.  B ) ) ) )
9 subcl 8097 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  e.  CC )
10 absvalsq 10995 . . 3  |-  ( ( A  -  B )  e.  CC  ->  (
( abs `  ( A  -  B )
) ^ 2 )  =  ( ( A  -  B )  x.  ( * `  ( A  -  B )
) ) )
119, 10syl 14 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  ( A  -  B )
) ^ 2 )  =  ( ( A  -  B )  x.  ( * `  ( A  -  B )
) ) )
12 absvalsq 10995 . . . 4  |-  ( A  e.  CC  ->  (
( abs `  A
) ^ 2 )  =  ( A  x.  ( * `  A
) ) )
13 absvalsq 10995 . . . . 5  |-  ( B  e.  CC  ->  (
( abs `  B
) ^ 2 )  =  ( B  x.  ( * `  B
) ) )
14 mulcom 7882 . . . . . 6  |-  ( ( B  e.  CC  /\  ( * `  B
)  e.  CC )  ->  ( B  x.  ( * `  B
) )  =  ( ( * `  B
)  x.  B ) )
154, 14mpdan 418 . . . . 5  |-  ( B  e.  CC  ->  ( B  x.  ( * `  B ) )  =  ( ( * `  B )  x.  B
) )
1613, 15eqtrd 2198 . . . 4  |-  ( B  e.  CC  ->  (
( abs `  B
) ^ 2 )  =  ( ( * `
 B )  x.  B ) )
1712, 16oveqan12d 5861 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( abs `  A ) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  =  ( ( A  x.  ( * `  A ) )  +  ( ( * `  B )  x.  B
) ) )
18 mulcl 7880 . . . . . 6  |-  ( ( A  e.  CC  /\  ( * `  B
)  e.  CC )  ->  ( A  x.  ( * `  B
) )  e.  CC )
194, 18sylan2 284 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  (
* `  B )
)  e.  CC )
2019addcjd 10899 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  ( * `  B
) )  +  ( * `  ( A  x.  ( * `  B ) ) ) )  =  ( 2  x.  ( Re `  ( A  x.  (
* `  B )
) ) ) )
21 cjmul 10827 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( * `  B
)  e.  CC )  ->  ( * `  ( A  x.  (
* `  B )
) )  =  ( ( * `  A
)  x.  ( * `
 ( * `  B ) ) ) )
224, 21sylan2 284 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  ( A  x.  ( * `  B ) ) )  =  ( ( * `
 A )  x.  ( * `  (
* `  B )
) ) )
23 cjcj 10825 . . . . . . . 8  |-  ( B  e.  CC  ->  (
* `  ( * `  B ) )  =  B )
2423adantl 275 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  (
* `  B )
)  =  B )
2524oveq2d 5858 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( * `  A )  x.  (
* `  ( * `  B ) ) )  =  ( ( * `
 A )  x.  B ) )
2622, 25eqtrd 2198 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  ( A  x.  ( * `  B ) ) )  =  ( ( * `
 A )  x.  B ) )
2726oveq2d 5858 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  ( * `  B
) )  +  ( * `  ( A  x.  ( * `  B ) ) ) )  =  ( ( A  x.  ( * `
 B ) )  +  ( ( * `
 A )  x.  B ) ) )
2820, 27eqtr3d 2200 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
Re `  ( A  x.  ( * `  B
) ) ) )  =  ( ( A  x.  ( * `  B ) )  +  ( ( * `  A )  x.  B
) ) )
2917, 28oveq12d 5860 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( abs `  A ) ^ 2 )  +  ( ( abs `  B
) ^ 2 ) )  -  ( 2  x.  ( Re `  ( A  x.  (
* `  B )
) ) ) )  =  ( ( ( A  x.  ( * `
 A ) )  +  ( ( * `
 B )  x.  B ) )  -  ( ( A  x.  ( * `  B
) )  +  ( ( * `  A
)  x.  B ) ) ) )
308, 11, 293eqtr4d 2208 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  ( A  -  B )
) ^ 2 )  =  ( ( ( ( abs `  A
) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  -  (
2  x.  ( Re
`  ( A  x.  ( * `  B
) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   ` cfv 5188  (class class class)co 5842   CCcc 7751    + caddc 7756    x. cmul 7758    - cmin 8069   2c2 8908   ^cexp 10454   *ccj 10781   Recre 10782   abscabs 10939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941
This theorem is referenced by:  sqabssubi  11095
  Copyright terms: Public domain W3C validator