Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2cnd | Unicode version |
Description: 2 is a complex number, deductive form (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
2cnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 8924 | . 2 | |
2 | 1 | a1i 9 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 cc 7747 c2 8904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-resscn 7841 ax-1re 7843 ax-addrcl 7846 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3121 df-ss 3128 df-2 8912 |
This theorem is referenced by: cnm2m1cnm3 9104 xp1d2m1eqxm1d2 9105 nneo 9290 zeo2 9293 2tnp1ge0ge0 10232 flhalf 10233 q2txmodxeq0 10315 mulbinom2 10567 binom3 10568 zesq 10569 sqoddm1div8 10604 cvg1nlemcxze 10920 resqrexlemover 10948 resqrexlemlo 10951 resqrexlemcalc1 10952 resqrexlemnm 10956 amgm2 11056 maxabslemab 11144 maxabslemlub 11145 max0addsup 11157 minabs 11173 bdtri 11177 trirecip 11438 geo2sum 11451 ege2le3 11608 efgt0 11621 tanval3ap 11651 even2n 11807 oddm1even 11808 oddp1even 11809 mulsucdiv2z 11818 ltoddhalfle 11826 m1exp1 11834 nn0enne 11835 flodddiv4 11867 flodddiv4t2lthalf 11870 sqrt2irrlem 12089 sqrt2irr 12090 pw2dvdslemn 12093 pw2dvdseulemle 12095 oddpwdc 12102 sqrt2irraplemnn 12107 prmdiv 12163 pythagtriplem15 12206 pythagtriplem16 12207 pythagtriplem17 12208 4sqlem7 12310 4sqlem10 12313 oddennn 12321 evenennn 12322 sin0pilem2 13303 lgslem1 13501 cvgcmp2nlemabs 13871 trilpolemisumle 13877 apdifflemr 13886 apdiff 13887 |
Copyright terms: Public domain | W3C validator |