| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulsucdiv2z | GIF version | ||
| Description: An integer multiplied with its successor divided by 2 yields an integer, i.e. an integer multiplied with its successor is even. (Contributed by AV, 19-Jul-2021.) |
| Ref | Expression |
|---|---|
| mulsucdiv2z | ⊢ (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zeo 9431 | . 2 ⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ)) | |
| 2 | peano2z 9362 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ) | |
| 3 | zmulcl 9379 | . . . . . 6 ⊢ (((𝑁 / 2) ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → ((𝑁 / 2) · (𝑁 + 1)) ∈ ℤ) | |
| 4 | 2, 3 | sylan2 286 | . . . . 5 ⊢ (((𝑁 / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 / 2) · (𝑁 + 1)) ∈ ℤ) |
| 5 | zcn 9331 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 6 | 2 | zcnd 9449 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℂ) |
| 7 | 2cnd 9063 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℂ) | |
| 8 | 2ap0 9083 | . . . . . . . . 9 ⊢ 2 # 0 | |
| 9 | 8 | a1i 9 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 2 # 0) |
| 10 | 5, 6, 7, 9 | div23apd 8855 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) = ((𝑁 / 2) · (𝑁 + 1))) |
| 11 | 10 | eleq1d 2265 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ ↔ ((𝑁 / 2) · (𝑁 + 1)) ∈ ℤ)) |
| 12 | 11 | adantl 277 | . . . . 5 ⊢ (((𝑁 / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ ↔ ((𝑁 / 2) · (𝑁 + 1)) ∈ ℤ)) |
| 13 | 4, 12 | mpbird 167 | . . . 4 ⊢ (((𝑁 / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ) |
| 14 | 13 | ex 115 | . . 3 ⊢ ((𝑁 / 2) ∈ ℤ → (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ)) |
| 15 | zmulcl 9379 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (𝑁 · ((𝑁 + 1) / 2)) ∈ ℤ) | |
| 16 | 15 | ancoms 268 | . . . . 5 ⊢ ((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 · ((𝑁 + 1) / 2)) ∈ ℤ) |
| 17 | 5, 6, 7, 9 | divassapd 8853 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) = (𝑁 · ((𝑁 + 1) / 2))) |
| 18 | 17 | eleq1d 2265 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ ↔ (𝑁 · ((𝑁 + 1) / 2)) ∈ ℤ)) |
| 19 | 18 | adantl 277 | . . . . 5 ⊢ ((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ ↔ (𝑁 · ((𝑁 + 1) / 2)) ∈ ℤ)) |
| 20 | 16, 19 | mpbird 167 | . . . 4 ⊢ ((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ) |
| 21 | 20 | ex 115 | . . 3 ⊢ (((𝑁 + 1) / 2) ∈ ℤ → (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ)) |
| 22 | 14, 21 | jaoi 717 | . 2 ⊢ (((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ) → (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ)) |
| 23 | 1, 22 | mpcom 36 | 1 ⊢ (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 ∈ wcel 2167 class class class wbr 4033 (class class class)co 5922 0cc0 7879 1c1 7880 + caddc 7882 · cmul 7884 # cap 8608 / cdiv 8699 2c2 9041 ℤcz 9326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-n0 9250 df-z 9327 |
| This theorem is referenced by: sqoddm1div8z 12051 |
| Copyright terms: Public domain | W3C validator |