Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulsucdiv2z | GIF version |
Description: An integer multiplied with its successor divided by 2 yields an integer, i.e. an integer multiplied with its successor is even. (Contributed by AV, 19-Jul-2021.) |
Ref | Expression |
---|---|
mulsucdiv2z | ⊢ (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zeo 9317 | . 2 ⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ)) | |
2 | peano2z 9248 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ) | |
3 | zmulcl 9265 | . . . . . 6 ⊢ (((𝑁 / 2) ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → ((𝑁 / 2) · (𝑁 + 1)) ∈ ℤ) | |
4 | 2, 3 | sylan2 284 | . . . . 5 ⊢ (((𝑁 / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 / 2) · (𝑁 + 1)) ∈ ℤ) |
5 | zcn 9217 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
6 | 2 | zcnd 9335 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℂ) |
7 | 2cnd 8951 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℂ) | |
8 | 2ap0 8971 | . . . . . . . . 9 ⊢ 2 # 0 | |
9 | 8 | a1i 9 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 2 # 0) |
10 | 5, 6, 7, 9 | div23apd 8745 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) = ((𝑁 / 2) · (𝑁 + 1))) |
11 | 10 | eleq1d 2239 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ ↔ ((𝑁 / 2) · (𝑁 + 1)) ∈ ℤ)) |
12 | 11 | adantl 275 | . . . . 5 ⊢ (((𝑁 / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ ↔ ((𝑁 / 2) · (𝑁 + 1)) ∈ ℤ)) |
13 | 4, 12 | mpbird 166 | . . . 4 ⊢ (((𝑁 / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ) |
14 | 13 | ex 114 | . . 3 ⊢ ((𝑁 / 2) ∈ ℤ → (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ)) |
15 | zmulcl 9265 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (𝑁 · ((𝑁 + 1) / 2)) ∈ ℤ) | |
16 | 15 | ancoms 266 | . . . . 5 ⊢ ((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 · ((𝑁 + 1) / 2)) ∈ ℤ) |
17 | 5, 6, 7, 9 | divassapd 8743 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) = (𝑁 · ((𝑁 + 1) / 2))) |
18 | 17 | eleq1d 2239 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ ↔ (𝑁 · ((𝑁 + 1) / 2)) ∈ ℤ)) |
19 | 18 | adantl 275 | . . . . 5 ⊢ ((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ ↔ (𝑁 · ((𝑁 + 1) / 2)) ∈ ℤ)) |
20 | 16, 19 | mpbird 166 | . . . 4 ⊢ ((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ) |
21 | 20 | ex 114 | . . 3 ⊢ (((𝑁 + 1) / 2) ∈ ℤ → (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ)) |
22 | 14, 21 | jaoi 711 | . 2 ⊢ (((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ) → (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ)) |
23 | 1, 22 | mpcom 36 | 1 ⊢ (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 703 ∈ wcel 2141 class class class wbr 3989 (class class class)co 5853 0cc0 7774 1c1 7775 + caddc 7777 · cmul 7779 # cap 8500 / cdiv 8589 2c2 8929 ℤcz 9212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-n0 9136 df-z 9213 |
This theorem is referenced by: sqoddm1div8z 11845 |
Copyright terms: Public domain | W3C validator |