ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqoddm1div8z Unicode version

Theorem sqoddm1div8z 12282
Description: A squared odd number minus 1 divided by 8 is an integer. (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
sqoddm1div8z  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N )  ->  ( ( ( N ^ 2 )  -  1 )  / 
8 )  e.  ZZ )

Proof of Theorem sqoddm1div8z
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 odd2np1 12269 . . 3  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  E. k  e.  ZZ  ( ( 2  x.  k )  +  1 )  =  N ) )
21biimpa 296 . 2  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N )  ->  E. k  e.  ZZ  ( ( 2  x.  k )  +  1 )  =  N )
3 eqcom 2208 . . . 4  |-  ( ( ( 2  x.  k
)  +  1 )  =  N  <->  N  =  ( ( 2  x.  k )  +  1 ) )
4 sqoddm1div8 10870 . . . . . . 7  |-  ( ( k  e.  ZZ  /\  N  =  ( (
2  x.  k )  +  1 ) )  ->  ( ( ( N ^ 2 )  -  1 )  / 
8 )  =  ( ( k  x.  (
k  +  1 ) )  /  2 ) )
54adantll 476 . . . . . 6  |-  ( ( ( ( N  e.  ZZ  /\  -.  2  ||  N )  /\  k  e.  ZZ )  /\  N  =  ( ( 2  x.  k )  +  1 ) )  -> 
( ( ( N ^ 2 )  - 
1 )  /  8
)  =  ( ( k  x.  ( k  +  1 ) )  /  2 ) )
6 mulsucdiv2z 12281 . . . . . . 7  |-  ( k  e.  ZZ  ->  (
( k  x.  (
k  +  1 ) )  /  2 )  e.  ZZ )
76ad2antlr 489 . . . . . 6  |-  ( ( ( ( N  e.  ZZ  /\  -.  2  ||  N )  /\  k  e.  ZZ )  /\  N  =  ( ( 2  x.  k )  +  1 ) )  -> 
( ( k  x.  ( k  +  1 ) )  /  2
)  e.  ZZ )
85, 7eqeltrd 2283 . . . . 5  |-  ( ( ( ( N  e.  ZZ  /\  -.  2  ||  N )  /\  k  e.  ZZ )  /\  N  =  ( ( 2  x.  k )  +  1 ) )  -> 
( ( ( N ^ 2 )  - 
1 )  /  8
)  e.  ZZ )
98ex 115 . . . 4  |-  ( ( ( N  e.  ZZ  /\ 
-.  2  ||  N
)  /\  k  e.  ZZ )  ->  ( N  =  ( ( 2  x.  k )  +  1 )  ->  (
( ( N ^
2 )  -  1 )  /  8 )  e.  ZZ ) )
103, 9biimtrid 152 . . 3  |-  ( ( ( N  e.  ZZ  /\ 
-.  2  ||  N
)  /\  k  e.  ZZ )  ->  ( ( ( 2  x.  k
)  +  1 )  =  N  ->  (
( ( N ^
2 )  -  1 )  /  8 )  e.  ZZ ) )
1110rexlimdva 2624 . 2  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N )  ->  ( E. k  e.  ZZ  ( ( 2  x.  k )  +  1 )  =  N  ->  ( ( ( N ^ 2 )  -  1 )  / 
8 )  e.  ZZ ) )
122, 11mpd 13 1  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N )  ->  ( ( ( N ^ 2 )  -  1 )  / 
8 )  e.  ZZ )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   E.wrex 2486   class class class wbr 4054  (class class class)co 5962   1c1 7956    + caddc 7958    x. cmul 7960    - cmin 8273    / cdiv 8775   2c2 9117   8c8 9123   ZZcz 9402   ^cexp 10715    || cdvds 12183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071  ax-pre-mulgt0 8072  ax-pre-mulext 8073
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-po 4356  df-iso 4357  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-frec 6495  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-reap 8678  df-ap 8685  df-div 8776  df-inn 9067  df-2 9125  df-3 9126  df-4 9127  df-5 9128  df-6 9129  df-7 9130  df-8 9131  df-n0 9326  df-z 9403  df-uz 9679  df-seqfrec 10625  df-exp 10716  df-dvds 12184
This theorem is referenced by:  2lgsoddprm  15675
  Copyright terms: Public domain W3C validator