| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnnq | GIF version | ||
| Description: The canonical embedding of positive integers into positive fractions. (Contributed by Jim Kingdon, 26-Apr-2020.) |
| Ref | Expression |
|---|---|
| nnnq | ⊢ (𝐴 ∈ N → [〈𝐴, 1o〉] ~Q ∈ Q) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1pi 7399 | . . . 4 ⊢ 1o ∈ N | |
| 2 | opelxpi 4696 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 1o ∈ N) → 〈𝐴, 1o〉 ∈ (N × N)) | |
| 3 | 1, 2 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ N → 〈𝐴, 1o〉 ∈ (N × N)) |
| 4 | enqex 7444 | . . . 4 ⊢ ~Q ∈ V | |
| 5 | 4 | ecelqsi 6657 | . . 3 ⊢ (〈𝐴, 1o〉 ∈ (N × N) → [〈𝐴, 1o〉] ~Q ∈ ((N × N) / ~Q )) |
| 6 | 3, 5 | syl 14 | . 2 ⊢ (𝐴 ∈ N → [〈𝐴, 1o〉] ~Q ∈ ((N × N) / ~Q )) |
| 7 | df-nqqs 7432 | . 2 ⊢ Q = ((N × N) / ~Q ) | |
| 8 | 6, 7 | eleqtrrdi 2290 | 1 ⊢ (𝐴 ∈ N → [〈𝐴, 1o〉] ~Q ∈ Q) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 〈cop 3626 × cxp 4662 1oc1o 6476 [cec 6599 / cqs 6600 Ncnpi 7356 ~Q ceq 7363 Qcnq 7364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-suc 4407 df-iom 4628 df-xp 4670 df-cnv 4672 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-1o 6483 df-ec 6603 df-qs 6607 df-ni 7388 df-enq 7431 df-nqqs 7432 |
| This theorem is referenced by: recnnpr 7632 nnprlu 7637 archrecnq 7747 archrecpr 7748 caucvgprlemnkj 7750 caucvgprlemnbj 7751 caucvgprlemm 7752 caucvgprlemopl 7753 caucvgprlemlol 7754 caucvgprlemloc 7759 caucvgprlemladdfu 7761 caucvgprlemladdrl 7762 caucvgprprlemloccalc 7768 caucvgprprlemnkltj 7773 caucvgprprlemnkeqj 7774 caucvgprprlemnjltk 7775 caucvgprprlemml 7778 caucvgprprlemopl 7781 caucvgprprlemlol 7782 caucvgprprlemloc 7787 caucvgprprlemexb 7791 caucvgprprlem1 7793 caucvgprprlem2 7794 pitonnlem2 7931 ltrennb 7938 recidpipr 7940 |
| Copyright terms: Public domain | W3C validator |