| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnnq | GIF version | ||
| Description: The canonical embedding of positive integers into positive fractions. (Contributed by Jim Kingdon, 26-Apr-2020.) |
| Ref | Expression |
|---|---|
| nnnq | ⊢ (𝐴 ∈ N → [〈𝐴, 1o〉] ~Q ∈ Q) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1pi 7510 | . . . 4 ⊢ 1o ∈ N | |
| 2 | opelxpi 4751 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 1o ∈ N) → 〈𝐴, 1o〉 ∈ (N × N)) | |
| 3 | 1, 2 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ N → 〈𝐴, 1o〉 ∈ (N × N)) |
| 4 | enqex 7555 | . . . 4 ⊢ ~Q ∈ V | |
| 5 | 4 | ecelqsi 6744 | . . 3 ⊢ (〈𝐴, 1o〉 ∈ (N × N) → [〈𝐴, 1o〉] ~Q ∈ ((N × N) / ~Q )) |
| 6 | 3, 5 | syl 14 | . 2 ⊢ (𝐴 ∈ N → [〈𝐴, 1o〉] ~Q ∈ ((N × N) / ~Q )) |
| 7 | df-nqqs 7543 | . 2 ⊢ Q = ((N × N) / ~Q ) | |
| 8 | 6, 7 | eleqtrrdi 2323 | 1 ⊢ (𝐴 ∈ N → [〈𝐴, 1o〉] ~Q ∈ Q) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 〈cop 3669 × cxp 4717 1oc1o 6561 [cec 6686 / cqs 6687 Ncnpi 7467 ~Q ceq 7474 Qcnq 7475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-suc 4462 df-iom 4683 df-xp 4725 df-cnv 4727 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-1o 6568 df-ec 6690 df-qs 6694 df-ni 7499 df-enq 7542 df-nqqs 7543 |
| This theorem is referenced by: recnnpr 7743 nnprlu 7748 archrecnq 7858 archrecpr 7859 caucvgprlemnkj 7861 caucvgprlemnbj 7862 caucvgprlemm 7863 caucvgprlemopl 7864 caucvgprlemlol 7865 caucvgprlemloc 7870 caucvgprlemladdfu 7872 caucvgprlemladdrl 7873 caucvgprprlemloccalc 7879 caucvgprprlemnkltj 7884 caucvgprprlemnkeqj 7885 caucvgprprlemnjltk 7886 caucvgprprlemml 7889 caucvgprprlemopl 7892 caucvgprprlemlol 7893 caucvgprprlemloc 7898 caucvgprprlemexb 7902 caucvgprprlem1 7904 caucvgprprlem2 7905 pitonnlem2 8042 ltrennb 8049 recidpipr 8051 |
| Copyright terms: Public domain | W3C validator |