| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnnq | GIF version | ||
| Description: The canonical embedding of positive integers into positive fractions. (Contributed by Jim Kingdon, 26-Apr-2020.) |
| Ref | Expression |
|---|---|
| nnnq | ⊢ (𝐴 ∈ N → [〈𝐴, 1o〉] ~Q ∈ Q) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1pi 7490 | . . . 4 ⊢ 1o ∈ N | |
| 2 | opelxpi 4748 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 1o ∈ N) → 〈𝐴, 1o〉 ∈ (N × N)) | |
| 3 | 1, 2 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ N → 〈𝐴, 1o〉 ∈ (N × N)) |
| 4 | enqex 7535 | . . . 4 ⊢ ~Q ∈ V | |
| 5 | 4 | ecelqsi 6726 | . . 3 ⊢ (〈𝐴, 1o〉 ∈ (N × N) → [〈𝐴, 1o〉] ~Q ∈ ((N × N) / ~Q )) |
| 6 | 3, 5 | syl 14 | . 2 ⊢ (𝐴 ∈ N → [〈𝐴, 1o〉] ~Q ∈ ((N × N) / ~Q )) |
| 7 | df-nqqs 7523 | . 2 ⊢ Q = ((N × N) / ~Q ) | |
| 8 | 6, 7 | eleqtrrdi 2323 | 1 ⊢ (𝐴 ∈ N → [〈𝐴, 1o〉] ~Q ∈ Q) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 〈cop 3669 × cxp 4714 1oc1o 6545 [cec 6668 / cqs 6669 Ncnpi 7447 ~Q ceq 7454 Qcnq 7455 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-iinf 4677 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-suc 4459 df-iom 4680 df-xp 4722 df-cnv 4724 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-1o 6552 df-ec 6672 df-qs 6676 df-ni 7479 df-enq 7522 df-nqqs 7523 |
| This theorem is referenced by: recnnpr 7723 nnprlu 7728 archrecnq 7838 archrecpr 7839 caucvgprlemnkj 7841 caucvgprlemnbj 7842 caucvgprlemm 7843 caucvgprlemopl 7844 caucvgprlemlol 7845 caucvgprlemloc 7850 caucvgprlemladdfu 7852 caucvgprlemladdrl 7853 caucvgprprlemloccalc 7859 caucvgprprlemnkltj 7864 caucvgprprlemnkeqj 7865 caucvgprprlemnjltk 7866 caucvgprprlemml 7869 caucvgprprlemopl 7872 caucvgprprlemlol 7873 caucvgprprlemloc 7878 caucvgprprlemexb 7882 caucvgprprlem1 7884 caucvgprprlem2 7885 pitonnlem2 8022 ltrennb 8029 recidpipr 8031 |
| Copyright terms: Public domain | W3C validator |