| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnnq | GIF version | ||
| Description: The canonical embedding of positive integers into positive fractions. (Contributed by Jim Kingdon, 26-Apr-2020.) |
| Ref | Expression |
|---|---|
| nnnq | ⊢ (𝐴 ∈ N → [〈𝐴, 1o〉] ~Q ∈ Q) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1pi 7441 | . . . 4 ⊢ 1o ∈ N | |
| 2 | opelxpi 4712 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 1o ∈ N) → 〈𝐴, 1o〉 ∈ (N × N)) | |
| 3 | 1, 2 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ N → 〈𝐴, 1o〉 ∈ (N × N)) |
| 4 | enqex 7486 | . . . 4 ⊢ ~Q ∈ V | |
| 5 | 4 | ecelqsi 6686 | . . 3 ⊢ (〈𝐴, 1o〉 ∈ (N × N) → [〈𝐴, 1o〉] ~Q ∈ ((N × N) / ~Q )) |
| 6 | 3, 5 | syl 14 | . 2 ⊢ (𝐴 ∈ N → [〈𝐴, 1o〉] ~Q ∈ ((N × N) / ~Q )) |
| 7 | df-nqqs 7474 | . 2 ⊢ Q = ((N × N) / ~Q ) | |
| 8 | 6, 7 | eleqtrrdi 2300 | 1 ⊢ (𝐴 ∈ N → [〈𝐴, 1o〉] ~Q ∈ Q) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 〈cop 3638 × cxp 4678 1oc1o 6505 [cec 6628 / cqs 6629 Ncnpi 7398 ~Q ceq 7405 Qcnq 7406 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-iinf 4641 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-br 4049 df-opab 4111 df-suc 4423 df-iom 4644 df-xp 4686 df-cnv 4688 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-1o 6512 df-ec 6632 df-qs 6636 df-ni 7430 df-enq 7473 df-nqqs 7474 |
| This theorem is referenced by: recnnpr 7674 nnprlu 7679 archrecnq 7789 archrecpr 7790 caucvgprlemnkj 7792 caucvgprlemnbj 7793 caucvgprlemm 7794 caucvgprlemopl 7795 caucvgprlemlol 7796 caucvgprlemloc 7801 caucvgprlemladdfu 7803 caucvgprlemladdrl 7804 caucvgprprlemloccalc 7810 caucvgprprlemnkltj 7815 caucvgprprlemnkeqj 7816 caucvgprprlemnjltk 7817 caucvgprprlemml 7820 caucvgprprlemopl 7823 caucvgprprlemlol 7824 caucvgprprlemloc 7829 caucvgprprlemexb 7833 caucvgprprlem1 7835 caucvgprprlem2 7836 pitonnlem2 7973 ltrennb 7980 recidpipr 7982 |
| Copyright terms: Public domain | W3C validator |