![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnnq | GIF version |
Description: The canonical embedding of positive integers into positive fractions. (Contributed by Jim Kingdon, 26-Apr-2020.) |
Ref | Expression |
---|---|
nnnq | ⊢ (𝐴 ∈ N → [⟨𝐴, 1o⟩] ~Q ∈ Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1pi 7316 | . . . 4 ⊢ 1o ∈ N | |
2 | opelxpi 4660 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 1o ∈ N) → ⟨𝐴, 1o⟩ ∈ (N × N)) | |
3 | 1, 2 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ N → ⟨𝐴, 1o⟩ ∈ (N × N)) |
4 | enqex 7361 | . . . 4 ⊢ ~Q ∈ V | |
5 | 4 | ecelqsi 6591 | . . 3 ⊢ (⟨𝐴, 1o⟩ ∈ (N × N) → [⟨𝐴, 1o⟩] ~Q ∈ ((N × N) / ~Q )) |
6 | 3, 5 | syl 14 | . 2 ⊢ (𝐴 ∈ N → [⟨𝐴, 1o⟩] ~Q ∈ ((N × N) / ~Q )) |
7 | df-nqqs 7349 | . 2 ⊢ Q = ((N × N) / ~Q ) | |
8 | 6, 7 | eleqtrrdi 2271 | 1 ⊢ (𝐴 ∈ N → [⟨𝐴, 1o⟩] ~Q ∈ Q) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2148 ⟨cop 3597 × cxp 4626 1oc1o 6412 [cec 6535 / cqs 6536 Ncnpi 7273 ~Q ceq 7280 Qcnq 7281 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-suc 4373 df-iom 4592 df-xp 4634 df-cnv 4636 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-1o 6419 df-ec 6539 df-qs 6543 df-ni 7305 df-enq 7348 df-nqqs 7349 |
This theorem is referenced by: recnnpr 7549 nnprlu 7554 archrecnq 7664 archrecpr 7665 caucvgprlemnkj 7667 caucvgprlemnbj 7668 caucvgprlemm 7669 caucvgprlemopl 7670 caucvgprlemlol 7671 caucvgprlemloc 7676 caucvgprlemladdfu 7678 caucvgprlemladdrl 7679 caucvgprprlemloccalc 7685 caucvgprprlemnkltj 7690 caucvgprprlemnkeqj 7691 caucvgprprlemnjltk 7692 caucvgprprlemml 7695 caucvgprprlemopl 7698 caucvgprprlemlol 7699 caucvgprprlemloc 7704 caucvgprprlemexb 7708 caucvgprprlem1 7710 caucvgprprlem2 7711 pitonnlem2 7848 ltrennb 7855 recidpipr 7857 |
Copyright terms: Public domain | W3C validator |