![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnnq | GIF version |
Description: The canonical embedding of positive integers into positive fractions. (Contributed by Jim Kingdon, 26-Apr-2020.) |
Ref | Expression |
---|---|
nnnq | ⊢ (𝐴 ∈ N → [〈𝐴, 1o〉] ~Q ∈ Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1pi 7375 | . . . 4 ⊢ 1o ∈ N | |
2 | opelxpi 4691 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 1o ∈ N) → 〈𝐴, 1o〉 ∈ (N × N)) | |
3 | 1, 2 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ N → 〈𝐴, 1o〉 ∈ (N × N)) |
4 | enqex 7420 | . . . 4 ⊢ ~Q ∈ V | |
5 | 4 | ecelqsi 6643 | . . 3 ⊢ (〈𝐴, 1o〉 ∈ (N × N) → [〈𝐴, 1o〉] ~Q ∈ ((N × N) / ~Q )) |
6 | 3, 5 | syl 14 | . 2 ⊢ (𝐴 ∈ N → [〈𝐴, 1o〉] ~Q ∈ ((N × N) / ~Q )) |
7 | df-nqqs 7408 | . 2 ⊢ Q = ((N × N) / ~Q ) | |
8 | 6, 7 | eleqtrrdi 2287 | 1 ⊢ (𝐴 ∈ N → [〈𝐴, 1o〉] ~Q ∈ Q) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 〈cop 3621 × cxp 4657 1oc1o 6462 [cec 6585 / cqs 6586 Ncnpi 7332 ~Q ceq 7339 Qcnq 7340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-suc 4402 df-iom 4623 df-xp 4665 df-cnv 4667 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-1o 6469 df-ec 6589 df-qs 6593 df-ni 7364 df-enq 7407 df-nqqs 7408 |
This theorem is referenced by: recnnpr 7608 nnprlu 7613 archrecnq 7723 archrecpr 7724 caucvgprlemnkj 7726 caucvgprlemnbj 7727 caucvgprlemm 7728 caucvgprlemopl 7729 caucvgprlemlol 7730 caucvgprlemloc 7735 caucvgprlemladdfu 7737 caucvgprlemladdrl 7738 caucvgprprlemloccalc 7744 caucvgprprlemnkltj 7749 caucvgprprlemnkeqj 7750 caucvgprprlemnjltk 7751 caucvgprprlemml 7754 caucvgprprlemopl 7757 caucvgprprlemlol 7758 caucvgprprlemloc 7763 caucvgprprlemexb 7767 caucvgprprlem1 7769 caucvgprprlem2 7770 pitonnlem2 7907 ltrennb 7914 recidpipr 7916 |
Copyright terms: Public domain | W3C validator |