| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgprprlemexb | Unicode version | ||
| Description: Lemma for caucvgprpr 7796. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 15-Jun-2021.) |
| Ref | Expression |
|---|---|
| caucvgprpr.f |
|
| caucvgprpr.cau |
|
| caucvgprpr.bnd |
|
| caucvgprpr.lim |
|
| caucvgprprlemexb.q |
|
| caucvgprprlemexb.r |
|
| Ref | Expression |
|---|---|
| caucvgprprlemexb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgprpr.f |
. . . . . 6
| |
| 2 | caucvgprpr.cau |
. . . . . 6
| |
| 3 | caucvgprpr.bnd |
. . . . . 6
| |
| 4 | caucvgprpr.lim |
. . . . . 6
| |
| 5 | 1, 2, 3, 4 | caucvgprprlemclphr 7789 |
. . . . 5
|
| 6 | caucvgprprlemexb.r |
. . . . . 6
| |
| 7 | recnnpr 7632 |
. . . . . 6
| |
| 8 | 6, 7 | syl 14 |
. . . . 5
|
| 9 | addclpr 7621 |
. . . . 5
| |
| 10 | 5, 8, 9 | syl2anc 411 |
. . . 4
|
| 11 | 1, 6 | ffvelcdmd 5701 |
. . . 4
|
| 12 | caucvgprprlemexb.q |
. . . 4
| |
| 13 | ltaprg 7703 |
. . . 4
| |
| 14 | 10, 11, 12, 13 | syl3anc 1249 |
. . 3
|
| 15 | addassprg 7663 |
. . . . . 6
| |
| 16 | 12, 5, 8, 15 | syl3anc 1249 |
. . . . 5
|
| 17 | addcomprg 7662 |
. . . . . . 7
| |
| 18 | 12, 5, 17 | syl2anc 411 |
. . . . . 6
|
| 19 | 18 | oveq1d 5940 |
. . . . 5
|
| 20 | 16, 19 | eqtr3d 2231 |
. . . 4
|
| 21 | addcomprg 7662 |
. . . . 5
| |
| 22 | 12, 11, 21 | syl2anc 411 |
. . . 4
|
| 23 | 20, 22 | breq12d 4047 |
. . 3
|
| 24 | 14, 23 | bitrd 188 |
. 2
|
| 25 | 1 | adantr 276 |
. . . . 5
|
| 26 | 2 | adantr 276 |
. . . . 5
|
| 27 | 3 | adantr 276 |
. . . . 5
|
| 28 | nnnq 7506 |
. . . . . . 7
| |
| 29 | recclnq 7476 |
. . . . . . 7
| |
| 30 | 6, 28, 29 | 3syl 17 |
. . . . . 6
|
| 31 | 30 | adantr 276 |
. . . . 5
|
| 32 | 11 | adantr 276 |
. . . . 5
|
| 33 | simpr 110 |
. . . . 5
| |
| 34 | 25, 26, 27, 4, 31, 32, 33 | caucvgprprlemexbt 7790 |
. . . 4
|
| 35 | ltaprg 7703 |
. . . . . . . 8
| |
| 36 | 35 | adantl 277 |
. . . . . . 7
|
| 37 | 25 | ffvelcdmda 5700 |
. . . . . . . . 9
|
| 38 | recnnpr 7632 |
. . . . . . . . . 10
| |
| 39 | 38 | adantl 277 |
. . . . . . . . 9
|
| 40 | addclpr 7621 |
. . . . . . . . 9
| |
| 41 | 37, 39, 40 | syl2anc 411 |
. . . . . . . 8
|
| 42 | 6 | ad2antrr 488 |
. . . . . . . . 9
|
| 43 | 42, 7 | syl 14 |
. . . . . . . 8
|
| 44 | addclpr 7621 |
. . . . . . . 8
| |
| 45 | 41, 43, 44 | syl2anc 411 |
. . . . . . 7
|
| 46 | 11 | ad2antrr 488 |
. . . . . . 7
|
| 47 | 12 | ad2antrr 488 |
. . . . . . 7
|
| 48 | addcomprg 7662 |
. . . . . . . 8
| |
| 49 | 48 | adantl 277 |
. . . . . . 7
|
| 50 | 36, 45, 46, 47, 49 | caovord2d 6097 |
. . . . . 6
|
| 51 | addassprg 7663 |
. . . . . . . 8
| |
| 52 | 41, 43, 47, 51 | syl3anc 1249 |
. . . . . . 7
|
| 53 | 52 | breq1d 4044 |
. . . . . 6
|
| 54 | addcomprg 7662 |
. . . . . . . . 9
| |
| 55 | 43, 47, 54 | syl2anc 411 |
. . . . . . . 8
|
| 56 | 55 | oveq2d 5941 |
. . . . . . 7
|
| 57 | 56 | breq1d 4044 |
. . . . . 6
|
| 58 | 50, 53, 57 | 3bitrd 214 |
. . . . 5
|
| 59 | 58 | rexbidva 2494 |
. . . 4
|
| 60 | 34, 59 | mpbid 147 |
. . 3
|
| 61 | 60 | ex 115 |
. 2
|
| 62 | 24, 61 | sylbird 170 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-eprel 4325 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-1o 6483 df-2o 6484 df-oadd 6487 df-omul 6488 df-er 6601 df-ec 6603 df-qs 6607 df-ni 7388 df-pli 7389 df-mi 7390 df-lti 7391 df-plpq 7428 df-mpq 7429 df-enq 7431 df-nqqs 7432 df-plqqs 7433 df-mqqs 7434 df-1nqqs 7435 df-rq 7436 df-ltnqqs 7437 df-enq0 7508 df-nq0 7509 df-0nq0 7510 df-plq0 7511 df-mq0 7512 df-inp 7550 df-iplp 7552 df-iltp 7554 |
| This theorem is referenced by: caucvgprprlemaddq 7792 |
| Copyright terms: Public domain | W3C validator |