ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recnnpr Unicode version

Theorem recnnpr 7735
Description: The reciprocal of a positive integer, as a positive real. (Contributed by Jim Kingdon, 27-Feb-2021.)
Assertion
Ref Expression
recnnpr  |-  ( A  e.  N.  ->  <. { l  |  l  <Q  ( *Q `  [ <. A ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. A ,  1o >. ]  ~Q  )  <Q  u } >.  e.  P. )
Distinct variable group:    A, l, u

Proof of Theorem recnnpr
StepHypRef Expression
1 nnnq 7609 . 2  |-  ( A  e.  N.  ->  [ <. A ,  1o >. ]  ~Q  e.  Q. )
2 recclnq 7579 . 2  |-  ( [
<. A ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. A ,  1o >. ]  ~Q  )  e.  Q. )
3 nqprlu 7734 . 2  |-  ( ( *Q `  [ <. A ,  1o >. ]  ~Q  )  e.  Q.  ->  <. { l  |  l 
<Q  ( *Q `  [ <. A ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. A ,  1o >. ]  ~Q  )  <Q  u } >.  e.  P. )
41, 2, 33syl 17 1  |-  ( A  e.  N.  ->  <. { l  |  l  <Q  ( *Q `  [ <. A ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. A ,  1o >. ]  ~Q  )  <Q  u } >.  e.  P. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200   {cab 2215   <.cop 3669   class class class wbr 4083   ` cfv 5318   1oc1o 6555   [cec 6678   N.cnpi 7459    ~Q ceq 7466   Q.cnq 7467   *Qcrq 7471    <Q cltq 7472   P.cnp 7478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-eprel 4380  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-1o 6562  df-oadd 6566  df-omul 6567  df-er 6680  df-ec 6682  df-qs 6686  df-ni 7491  df-pli 7492  df-mi 7493  df-lti 7494  df-plpq 7531  df-mpq 7532  df-enq 7534  df-nqqs 7535  df-plqqs 7536  df-mqqs 7537  df-1nqqs 7538  df-rq 7539  df-ltnqqs 7540  df-inp 7653
This theorem is referenced by:  caucvgprprlemnkltj  7876  caucvgprprlemnbj  7880  caucvgprprlemopu  7886  caucvgprprlemexbt  7893  caucvgprprlemexb  7894  caucvgprprlemaddq  7895  caucvgsrlemcau  7980  caucvgsrlemoffcau  7985  recnnre  8038  recidpirq  8045  axcaucvglemcau  8085
  Copyright terms: Public domain W3C validator